Eficacia de los modelos de aprendizaje integrado, aprendizaje basado en problemas y aprendizaje directo sobre HOTS en bádminton

Autores/as

  • Sefri Hardiansyah Universitas Pendidikan Indonesia, and Universitas Negeri Padang https://orcid.org/0009-0007-3895-495X
  • Nurlan Kusmaedi Universitas Pendidikan Indonesia
  • Amung Ma'mun Universitas Pendidikan Indonesia
  • Herman Subarjah Universitas Pendidikan Indonesia
  • Syahriadi Syahriadi Universitas Riau
  • Deddy Rahmat Saputra Universitas Muhammadiyah Muara Bungo https://orcid.org/0009-0003-9518-5182

DOI:

https://doi.org/10.47197/retos.v68.109207

Palabras clave:

aprendizaje integrado, aprendizaje basado en problemas, instrucción directa, HOTS, bádminton

Resumen

Introducción: Las Habilidades de Pensamiento de Orden Superior (HOTS, por sus siglas en inglés) son necesarias para los estudiantes de educación superior como provisión para entrar en el mundo laboral, por lo tanto es importante que cada estudiante domine bien las HOTS, incluyendo los estudiantes de educación física de la Universitas Negeri Padang.

Objetivo: El propósito de este estudio era examinar la eficacia de los modelos de aprendizaje integrado, basado en problemas y la instrucción directa en el desarrollo de HOTS de los estudiantes.

Methodology: Este estudio utilizó un diseño de grupo de control pretest-postest. La técnica de muestreo utilizada fue el muestreo intencional, de modo que se obtuvieron 62 estudiantes. Este estudio utilizó el instrumento HOTS que consta de 15 preguntas. El análisis de los datos se llevó a cabo mediante la prueba t de muestras pareadas y la prueba ANOVA.

Resultados: Los resultados del análisis de la prueba t de muestras pareadas de los datos del pretest y el postest mostraron que los tres modelos de aprendizaje tenían un valor p <0,05 (hipótesis aceptada) y en base a la prueba ANOVA (prueba de la eficacia del modelo de aprendizaje) se obtuvo un valor p> 0,05 (hipótesis rechazada).

Discusión: Aunque el modelo de aprendizaje integrado y el aprendizaje basado en problemas guían explícitamente a los estudiantes a analizar y resolver problemas, un modelo de instrucción directa bien planificado también puede desarrollar los HOTS de los estudiantes tan bien como los modelos de aprendizaje integrado y basado en problemas.

Conclusiones: Los modelos de aprendizaje integrado, aprendizaje basado en problemas e instrucción directa proporcionan mejoras significativas en los HOTS de los estudiantes, pero las mejoras de los tres modelos no son significativamente diferentes.

Citas

Almulla, M. A., & Al-Rahmi, W. M. (2023). Integrated social cognitive theory with learning input factors: The effects of problem-solving skills and critical thinking skills on learning performance sustainability. Sustainability, 15(5), 3978. https://doi.org/10.3390/su15053978

Argaw, A. S., Haile, B. B., Ayalew, B. T., & Kuma, S. G. (2016). The effect of problem based learning (PBL) instruction on students’ motivation and problem solving skills of physics. Eurasia Journal of Mathematics, Science and Technology Education, 13(3), 857–871. https://doi.org/10.12973/eurasia.2017.00647a

Baranova, T., Khalyapina, L., Kobicheva, A., & Tokareva, E. (2019). Evaluation of students’ engagement in integrated learning model in a blended environment. Education Sciences, 9(2), 138. https://doi.org/10.3390/educsci9020138

Barber, J. P. (2012). Integration of learning: A grounded theory analysis of college students’ learning. American Educational Research Journal, 49(3), 590–617. https://doi.org/10.3102/0002831212437854

Bennett, J., & Kaga, Y. (2010). The integration of early childhood systems within education. International Journal of Child Care and Education Policy, 4, 35–43. https://doi.org/10.1007/2288-6729-4-1-35

Blegur, J., Ma’mun, A., Mahendra, A., Alif, M. N., Juliantine, T., Lumba, A. J. F., & others. (2024). Integrated Learning Models for Micro-Teaching Course. Emerging Science Journal, 8(6), 2480–2500. https://doi.org/10.28991/ESJ-2024-08-06-020

Boeren, E., & Iniguez-Berrozpe, T. (2022). Unpacking PIAAC’s cognitive skills measurements through engagement with Bloom’s taxonomy. Studies in Educational Evaluation, 73, 101151. https://doi.org/10.1016/j.stueduc.2022.101151

Chaiyama, N. (2019). The development of blended leaning model by using active learning activity to develop learning skills in 21st century. International Journal of Information and Education Technology, 9(12), 880–886. https://doi.org/10.18178/ijiet.2019.9.12.1321

Charles, H. H., Katherine, M. M., & Logana, N. E. (2020). A review of the effects of physical activity on cognition and brain health across children and adolescence. Building Future Health and Well-Being of Thriving Toddlers and Young Children: 95th Nestlé Nutrition Institute Workshop, September 2020, 116. https://doi.org/10.1159/000511508

Chun, T. C., & Abdullah, M. N. L. Y. B. (2019). The teaching of higher order thinking skills (HOTS) in Malaysian schools: Policy and practices. MOJEM: Malaysian Online Journal of Educational Management, 7(3), 1–18. https://doi.org/10.22452/mojem.vol7no3.1

Coe, D. P., Pivarnik, J. M., Womack, C. J., Reeves, M. J., & Malina, R. M. (2006). Effect of physical education and activity levels on academic achievement in children. Medicine & Science in Sports & Exercise, 38(8), 1515–1519. https://doi.org/10.1249/01.mss.0000227537.13175.1b

Coffey, J., & Alberts, B. (2013). Improving education standards. In Science (Vol. 339, Issue 6119, p. 489). American Association for the Advancement of Science. https://doi.org/10.1126/science.1225590

Cohen, M. T. (2008). The effect of direct instruction versus discovery learning on the understanding of science lessons by second grade students. Northeastern Educational Research Association (Nera) Annual Conference: University of New York. https://opencommons.uconn.edu/nera_2008/30

Coll, R. K., Eames, C. W., Paku, L. K., Lay, M. C., Hodges, D., Bhat, R., Ram, S., Ayling, D., Fleming, J., Ferkins, L., & others. (2011). An exploration of the pedagogies employed to integrate knowledge in work-integrated learning. The Journal of Cooperative Education and Internships, 43, 14–35. https://hdl.handle.net/10289/5554

Cooper, H. (2018). What is creativity in history? International Journal of Primary, Elementary and Early Years Education, 46(6), 636–647. https://doi.org/10.1080/03004279.2018.1483799

da Silva, S., & Arida, R. M. (2015). Physical activity and brain development. Expert Review of Neurotherapeutics, 15(9), 1041–1051. https://doi.org/10.1586/14737175.2015.1077115

Dawood, O., Rea, J., Decker, N., Kelley, T., & Cianciolo, A. T. (2021). Problem-based learning about problem-based learning: lessons learned from a student-led initiative to improve tutor group interaction. Medical Science Educator, 31, 395–399. https://doi.org/10.1007/s40670-021-01259-1

Dillenbourg, P. (2007). Framework for integrated learning. HAL Open Science. https://telearn.hal.science/hal-00190107/document

Dockterman, D. (2018). Insights from 200+ years of personalized learning. Npj Science of Learning, 3(1), 15. https://doi.org/10.1038/s41539-018-0033-x

Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., Lambourne, K., & Szabo-Reed, A. N. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Medicine and Science in Sports and Exercise, 48(6), 1197. https://doi.org/10.1249/MSS.0000000000000901

Edwar, E., Putri, R. I. I., Zulkardi, Z., & Darmawijoyo, D. (2023). Developing a Workshop Model for High School Mathematics Teachers Constructing HOTS Questions through the Pendidikan Matematika Realistik Indonesia Approach. Journal on Mathematics Education, 14(4), 603–626. https://doi.org/10.22342/jme.v14i4.pp603-626

Etikan, I., Musa, S. A., Alkassim, R. S., & others. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1–4. https://doi.org/10.11648/j.ajtas.20160501.11

Fazriyah, N., Supriyati, Y., & Rahayu, W. (2017). The effect of integrated learning model and critical thinking skill of science learning outcomes. Journal of Physics: Conference Series, 812(1), 12014. https://doi.org/10.1088/1742-6596/812/1/012014

Fisher, R., Perényi, A., & Birdthistle, N. (2021). The positive relationship between flipped and blended learning and student engagement, performance and satisfaction. Active Learning in Higher Education, 22(2), 97–113. https://doi.org/10.1177/1469787418801702

Freudenberg, B., Brimble, M., & Vyvyan, V. (2010). The penny drops: can work integrated learning improve students’ learning? EJournal of Business Education & Scholarship of Teaching, 4(1), 42–61. https://ssrn.com/abstract=1636631

Gligoroska, J. P., & Manchevska, S. (2012). The effect of physical activity on cognition--physiological mechanisms. Materia Socio-Medica, 24(3), 198. https://doi.org/10.5455/msm.2012.24.198-202

Gutiérrez-Capote, A., Jiménez-Martinez, J., Madinabeitia, I., de Orbe-Moreno, M., Pesce, C., & Cardenas, D. (2024). Sport as cognition enhancer from childhood to young adulthood: a systematic review focused on sport modality. International Journal of Sport and Exercise Psychology, 22(2), 395–427. https://doi.org/10.1080/1612197X.2023.2289552

Hardiansyah, S. (2024). Teachers’ implementation of higher order thinking skills in physical education in an online-based professional teacher education programme. Journal of Learning for Development, 11(3), 502–513. https://doi.org/10.56059/jl4d.v11i3.1190

Hardiansyah, S., Kusmaedi, N., Ma’mun, A., & Mahendra, A. (2024). Physical education teachers’ attitudes towards stimulating higher order thinking skills in elementary school students: Differences in certified and non-certified teachers. Retos, 54, 857–866. https://doi.org/10.47197/retos.v54.103844

Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. routledge. https://doi.org/10.4324/9780203887332

Hendarwati, E., Nurlaela, L., & Bachri, B. S. (2021). The Collaborative Problem Based Learning Model Innovation. Journal of Educational and Social Research, 11(4), 97–106. https://doi.org/10.36941/JESR-2021-0080

Herghiligiu, I. V., Pohontu, A., Pislaru, M., & Vilcu, A. (2018). Influencing Factors and Outcomes of the Learning by Sharing Process. Procedia-Social and Behavioral Sciences, 238, 63–72. https://doi.org/10.1016/j.sbspro.2018.03.008

Heward, W. L., & Twyman, J. S. (2021). Whatever the kid does is the truth: Introduction to the special section on Direct Instruction. Perspectives on Behavior Science, 44(2), 131–138. https://doi.org/10.1007/s40614-021-00314-x

Ichsan, I. Z., Sigit, D. V., Miarsyah, M., Ali, A., Arif, W. P., & Prayitno, T. A. (2019). HOTS-AEP: Higher Order Thinking Skills from Elementary to Master Students in Environmental Learning. European Journal of Educational Research, 8(4), 935–942. https://doi.org/10.12973/eu-jer.8.4.935

Irons, A., & Thomas, P. (2014). Problem based learning in digital forensics. Innovation in Teaching and Learning in Information and Computer Sciences, 1–10. https://doi.org/10.1080/23752696.2015.1134200

Kahu, E. R. (2013). Framing student engagement in higher education. Studies in Higher Education, 38, 758–773. https://doi.org/10.1080/03075079.2011.598505

Karimi, R. (2011). Interface between problem-based learning and a learner-centered paradigm. Advances in Medical Education and Practice, 117–125. https://doi.org/10.2147/AMEP.S12794

Kesici, A. E., Güvercin, D., & Küçükakça, H. (2021). Metacognition researches in Turkey, Japan and Singapore. International Journal of Evaluation and Research in Education, 10. https://doi.org/10.11591/IJERE.V10I2.20790

Kim, J., Kwon, Y., & Cho, D. (2011). Investigating factors that influence social presence and learning outcomes in distance higher education. Computers & Education, 57(2), 1512–1520. https://doi.org/10.1016/j.compedu.2011.02.005

Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15(10), 661–667. https://doi.org/10.1111/j.0956-7976.2004.00737.x

Klegeris, A., Bahniwal, M., & Hurren, H. (2013). Improvement in generic problem-solving abilities of students by use of tutor-less problem-based learning in a large classroom setting. CBE—Life Sciences Education, 12(1), 73–79. https://doi.org/10.1187/cbe.12-06-0081

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into Practice, 41(4), 212–218. https://doi.org/10.1207/s15430421tip4104_2

Lei, H., Cui, Y., & Zhou, W. (2018). Relationships between Student Engagement and Academic Achievement: A Meta-Analysis. Social Behavior and Personality, 46, 517–528. https://doi.org/10.2224/SBP.7054

Liu, J., Liu, Z., Wang, C., Xu, Y., Chen, J., & Cheng, Y. (2024). K-12 students’ higher-order thinking skills: Conceptualization, components, and evaluation indicators. Thinking Skills and Creativity, 52, 101551. https://doi.org/10.1016/j.tsc.2024.101551

Luo, Y.-J. (2019). The influence of problem-based learning on learning effectiveness in students’ of varying learning abilities within physical education. Innovations in Education and Teaching International, 56(1), 3–13. https://doi.org/10.1080/14703297.2017.1389288

Magana, A. J., Vieira, C., & Boutin, M. (2018). Characterizing Engineering Learners’ Preferences for Active and Passive Learning Methods. IEEE Transactions on Education, 61, 46–54. https://doi.org/10.1109/TE.2017.2740203

Magliaro, S. G., Lockee, B. B., & Burton, J. K. (2005). Direct instruction revisited: A key model for instructional technology. Educational Technology Research and Development, 53(4), 41–55. https://link.springer.com/article/10.1007/bf02504684

Marar, H. W., Shahroury, F. R., & Fares, M. (2022). Work-Integrated and Cooperative Learning Effects on Micro-Electronics Design Classes. Journal of Higher Education Theory & Practice, 12(13). https://doi.org/10.33423/jhetp.v22i13.5508

Massey, D., Flenady, T., Byrne, A.-L., Connor, J., & Le Lagadec, D. (2024). ‘White lies and safety nets’: The perceptions of nurses on the use of early warning systems and the development of higher-order thinking skills. Australian Critical Care. https://doi.org/10.1016/j.aucc.2024.04.007

Nopembri, S., Rismayanthi, C., Putro, K. H., Kristiyanto, A., Margono, A., Karakauki, M., & Pratama, K. W. (2022). Improvement of HOTS method in basketball game through TGFU learning. Physical Education Theory and Methodology, 22(1), 85–91. https://doi.org/10.17309/tmfv.2022.1.12

OECD. (2023). PISA 2022 Results. Learning During-and from-Distruption: Vol. II. PISA OECD Publishing, Paris. https://doi.org/10.1787/a97db61c-en

Perlman, D., & Webster, C. A. (2011). Supporting student autonomy in physical education. Journal of Physical Education, Recreation & Dance, 82(5), 46–49. https://doi.org/10.1080/07303084.2011.10598628

Phuseengoen, N., & Singhchainara, J. (2022). Effects of STEM-integrated movement activities on movement and analytical thinking skills of lower secondary students. Journal of Physical Education and Sport, 22(2), 511–517. https://doi.org/10.7752/jpes.2022.02064

Prahani, B., Jatmiko, B., Hariadi, B., Sunarto, D., Sagirani, T., Amelia, T., & Lemantara, J. (2020). Blended web mobile learning (BWML) model to improve students’ higher order thinking skills. International Journal of Emerging Technologies in Learning (IJET), 15(11), 42–55. https://doi.org/10.3991/ijet.v15i11.12853

Purnomo, E., Jermaina, N., Marheni, E., Gumilar, A., Widarsa, A. H., Elpatsa, A., & Abidin, N. E. Z. (2024). Enhancing problem-solving skills through physical education learning: a comprehensive analysis. Retos, 58, 435–444. https://doi.org/10.47197/retos.v58.106838

Ratey, J. J., & Loehr, J. E. (2011). The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations. Reviews in the Neurosciences, 22(2). https://doi.org/10.1515/rns.2011.017

Richland, L. E., Zur, O., & Holyoak, K. J. (2007). Cognitive supports for analogies in the mathematics classroom. Science, 316(5828), 1128–1129. https://doi.org/10.1126/science.1142103

Rodriguez-Negro, J., & Yanci, J. (2020). Which instructional models influence more on perceived exertion, affective valence, physical activity level, and class time in physical education? Educational Psychology, 40(5), 608–621. https://doi.org/10.1080/01443410.2019.1613516

Sánchez-Cabrero, R., Estrada-Chichón, J. L., Abad-Mancheño, A., & Mañoso-Pacheco, L. (2021). Models on teaching effectiveness in current scientific literature. Education Sciences, 11(8), 409. https://doi.org/10.3390/educsci11080409

Silva, R., Farias, C., & Mesquita, I. (2021). Cooperative learning contribution to student social learning and active role in the class. Sustainability, 13(15), 8644. https://doi.org/10.3390/su13158644

Solomon, Y. (2020). Comparison between problem-based learning and lecture-based learning: Effect on nursing students’ immediate knowledge retention. Advances in Medical Education and Practice, 947–952. https://doi.org/10.2147/AMEP.S269207

Song, X., Razali, A. B., Sulaiman, T., Jeyaraj, J. J., & Ds, P. (2024). Impact of project-based learning on critical thinking skills and language skills in EFL context: A review of literature. World, 14(5). https://doi.org/10.5430/wjel.v14n5p402

Sozen, H. (2012). The effect of physical education and sports school training on problem solving skills of the athletes. Procedia-Social and Behavioral Sciences, 46, 4186–4190. https://doi.org/10.1016/j.sbspro.2012.06.223

Srinivas, N. S., Vimalan, V., Padmanabhan, P., & Gulyás, B. (2021). An overview on cognitive function enhancement through physical exercises. Brain Sciences, 11(10), 1289. https://doi.org/10.3390/brainsci11101289

Suhirman, S., Yusuf, Y., Muliadi, A., & Prayogi, S. (2020). The effect of problem-based learning with character emphasis toward students’ higher-order thinking skills and characters. International Journal of Emerging Technologies in Learning (IJET), 15(6), 183–191. https://doi.org/10.3991/ijet.v15i06.12061

Sungur, S., & Tekkaya, C. (2006). Effects of problem-based learning and traditional instruction on self-regulated learning. The Journal of Educational Research, 99(5), 307–320. https://doi.org/10.3200/JOER.99.5.307-320

Suwarma, I. R., & Apriyani, S. (2022). Explore Teachers ’ Skills in Developing Lesson Plan and Assessment That Oriented on Higher Order Thinking Skills ( HOTS ). Journal of Innovation in Educational and Cultural Research, 3(2), 106–113. https://doi.org/10.46843/jiecr.v3i2.66

Tan, L. S., Koh, E., Lee, S. S., Ponnusamy, L. D., & Tan, K. C. K. (2017). The complexities in fostering critical thinking through school-based curriculum innovation: research evidence from Singapore. Asia Pacific Journal of Education, 37, 517–534. https://doi.org/10.1080/02188791.2017.1389694

Tandzegolskienė-Bielaglovė, I., Jakavonytė-Staškuvienė, D., & Kaminskienė, L. (2023). Integrated learning at primary schools in Lithuania. Pedagogika/Pedagogy, 152(4), 188–212. https://doi.org/10.15823/p.2023.152.10

Taningrum, N., Kriswanto, E. S., Pambudi, A. F., & Yulianto, W. D. (2024). Improving Critical Thinking Skills Using Animated Videos Based on Problem-Based Learning. Retos, 57, 692–696. https://doi.org/10.47197/retos.v57.103297

Umar, U., Okilanda, A., Suganda, M. A., Mardesia, P., Suryadi, D., Wahyuni, D., Widyastuti, S. R., Samodra, Y. T. J., & Kurniawan, F. (2023). Blended learning and online learning with project-based learning: Do they affect cognition and psycho-motor learning achievement in physical conditions? Retos, 50, 556–565. https://doi.org/10.47197/retos.v50.99965

Waffak, M. N., Sukoco, P., Sugiyanto, F. X., Arifianti, E., Setiawan, J., & Daryono, R. W. (2022). Developing a Basketball Learning Model Using the Teaching Game for Understanding (TGfU) Approach to Improve the Effectiveness of HOTS in Elementary Schools. Physical Education Theory and Methodology, 22(3s), S21--S29. https://doi.org/10.17309/tmfv.2022.3s.03

Sujana Wahyuri, A. ., Batubara, R. ., & Okilanda, A. . (2023). Implementación Implementation of small side games in the learning process education physical sports and health at SMK Padang. Retos, 50, 1135–1139. https://doi.org/10.47197/retos.v50.100161

Wijnen, F., Walma van der Molen, J., & Voogt, J. (2021). Measuring primary school teachers’ attitudes towards stimulating higher-order thinking (SHOT) in students: Development and validation of the SHOT questionnaire. Thinking Skills and Creativity, 42(May), 100954. https://doi.org/10.1016/j.tsc.2021.100954

Wu, T.-T., Sari, N. A. R. M., & Huang, Y.-M. (2024). Integrating extended formative assessment in flipped jigsaw learning: Promoting learning engagement and higher-order thinking skills in international business education context. The International Journal of Management Education, 22(1), 100930. https://doi.org/10.1016/j.ijme.2024.100930

Xue, J., Ma, W., Feng, X., Guo, P., Guo, Y., Hu, X., & Chen, B. (2023). Stacking integrated learning model via ELM and GRU with mixture correntropy loss for robust state of health estimation of lithium-ion batteries. Energy, 284, 129279. https://doi.org/10.1016/j.energy.2023.129279

Yeh, Y.-C. (2009). Integrating e-learning into the direct-instruction model to enhance the effectiveness of critical-thinking instruction. Instructional Science, 37, 185–203. https://doi.org/10.1007/s11251-007-9048-z

Yu, Z., Yu, L., Xu, Q., Xu, W., & Wu, P. (2022). Effects of mobile learning technologies and social media tools on student engagement and learning outcomes of English learning. Technology, Pedagogy and Education, 31, 381–398. https://doi.org/10.1080/1475939X.2022.2045215

Ziegler, E., & Stern, E. (2016). Consistent advantages of contrasted comparisons: Algebra learning under direct instruction. Learning and Instruction, 41, 41–51. https://doi.org/10.1016/j.learninstruc.2015.09.006

Zwaal, W. (2019). Assessment for problem-based learning. Research in Hospitality Management, 9(2), 77–78. https://doi.org/10.1080/22243534.2019.1689696

Descargas

Publicado

2025-06-22

Cómo citar

Hardiansyah, S., Kusmaedi, N., Ma'mun, A., Subarjah, H., Syahriadi, S., & Saputra, D. R. (2025). Eficacia de los modelos de aprendizaje integrado, aprendizaje basado en problemas y aprendizaje directo sobre HOTS en bádminton. Retos, 68, 1913–1926. https://doi.org/10.47197/retos.v68.109207

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas