Efecto agudo del entrenamiento concurrente en el perfil hematológico y hepático, y en los marcadores de daño muscular en individuos entrenados.
DOI:
https://doi.org/10.47197/retos.v69.110879Palabras clave:
Entrenamiento, Entrenamiento concurrente, lesión muscular, perfil hematológico, perfil hepáticoResumen
Objetivo: analizar el efecto agudo del entrenamiento concurrente sobre el perfil hematológico, hepático y los marcadores de lesión muscular en individuos entrenados.
Metodología: 11 varones entrenados (27,0 ± 1,13 años) fueron sometidos a evaluación de la composición corporal, de la fuerza muscular, de la aptitud cardiorrespiratoria y una sesión de entrenamiento concurrente (CT). Muestras de sangre de glucosa (GLU), colesterol total (TC), triglicéridos (TG), fracción de colesterol HDL (HDL), fracción de colesterol LDL (LDL), gamma glutamil transferasa (GGT), alanina amino transferasa (ALT), aspartato se recogieron aminotransferasa (AST), urea (Ur), bilirrubina (Bil), proteína total (TP), lactato (LAC), creatina quinasa (CPK) y lactato deshidrogenasa (LDH) antes e inmediatamente después de la TC.
Resultados: la prueba t de Student pareada mostró un aumento significativo en los niveles de HDL (p=0,037), GGT (0,015), AST (p=0,0001), Ur (p=0,002), Bil (p=0,0001), TP (p=0,024), LAC (p=0,015), CPK (p=0,0001) y LHD (p=0,005).
Conclusiones: Una sola sesión de entrenamiento concurrente aumentó la concentración sanguínea de los parámetros bioquímicos estudiados relacionados con la salud cardiometabólica en los individuos evaluados. Además, parece que el nivel de condición física de los individuos puede influir en el comportamiento de las variables bioquímicas en respuesta al ejercicio físico.
Citas
ACSM. (2013). Guidelines for exercise testing and prescription (9th ed.). Lippincott Williams & Wilkins.
Amaro-Gahete, F. J., et al. (2021). Effect of a 12-week concurrent training intervention on cardiometa-bolic health in obese men: A pilot study. Frontiers in Physiology, 12, 630831.
Antunes, B. M. M., et al. (2020). Exercise intensity and physical fitness modulate lipoproteins profile during acute aerobic exercise session. Scientific Reports, 10, 4160.
Baechle, T. R., & Earle, R. W. (2016). Essentials of strength training and conditioning. Champaign: Hu-man Kinetics.
Bandyopadhyay, A. (2014). Validity of Cooper's 12-min run test for estimation of maximum oxygen uptake in female university students. Indian Journal of Physiology and Pharmacology, 58(2), 184-186.
Baptista, L. C., Machado-Rodrigues, A. M., & Martins, R. A. (2018). Back to basics with active lifestyles: exercise is more effective than metformin to reduce cardiovascular risk in older adults with ty-pe 2 diabetes. Biology of Sport, 35(4), 363.
Cho, A. R., et al (2019). Effects of alternate day fasting and exercise on cholesterol metabolism in overweight or obese adults: a pilot randomized controlled trial. Metabolism, 93, 52-60.
Cohen, J. (1988). Statistical power analysis for the behavioural sciences. Hillsdale, NJ: Laurence Erl-baum Associates, Inc.
Egan, B., & Sharples, A. P. (2023). Molecular responses to acute exercise and their relevance for adap-tations in skeletal muscle to exercise training. Physiological Reviews, 103, 2057–2170.
Figueira, F. R., et al. (2019). Effect of exercise on glucose variability in healthy subjects: randomized crossover trial. Biology of Sport, 36(2), 141.
Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clini-cal Chemistry, 18(6), 499-502.
Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature Me-tabolism, 2(9), 817-828.
Jackson, A., & Pollock, M. (2007). Generalized equations for predicting body density of men. British Journal of Nutrition, 40(03), 497-504.
Jagim, A. R., et al. (2023). Validation of skinfold equations and alternative methods for the determina-tion of fat-free mass in young athletes. Frontiers in Sports and Active Living, 5, 1240252.
Johnson, J. L., et al. (2019). Ten-year legacy effects of three eight-month exercise training programs on cardiometabolic health parameters. Frontiers in Physiology, 10, 452.
Jurasz, M., et al. (2022). Acute cardiorespiratory and metabolic responses to incremental cycling exer-cise in endurance- and strength-trained athletes. Biology, 11(643).
Lachman, M. E., et al. (2018). When adults don’t exercise: behavioral strategies to increase physical activity in sedentary middle-aged and older adults. Innovation in Aging, 2(1), 1-12.
Lavie, C. J., et al. (2019). Sedentary behavior, exercise, and cardiovascular health. Circulation Research, 124(5), 799-815.
Leońska-Duniec, A., et al. (2019). Association of the TNF-α-308G/A polymorphism with lipid profile changes in response to aerobic training program. Biology of Sport, 36(3), 291.
Marfell-Jones, T., Stewart, A., & Carter, L. (2006). International standards for anthropometric assess-ment. South Africa: International Society for the Advancement of Kinanthropometry.
Markov, A., Bussweiler, J., Baumert, P., Helm, N., Rex, M., Behm, S., Krüger, T., & Chaabene, H. (2025). The order of concurrent training affects acute immunological stress responses and measures of muscular fitness in female youth judo athletes. European Journal of Sport Science, 25(1), e12262.
Mathunjwa, M. L., et al. (2021). Effects of four weeks of concurrent taekwondo plus resistance training on post-exercise blood biomarkers of physiological stress in previously-trained individuals. Asian Journal of Sports Medicine, 12(4), e107380.
Mello, D. B., et al. (2019). Correlation between nutritional state, blood pressure and waist circumferen-ce in sedentary women. Advances in Obesity Weight Management & Control, 9(6), 152-154.
Monteiro-Lago, T., et al. (2019). Impact of eight weeks of concurrent training on obesity-related bio-chemical parameters and cardiometabolic risk factors: a case report. Advances in Obesity, Weight Management & Control, 9(4), 98-103.
Ramírez-Vélez, R., et al. (2019). Effectiveness of HIIT compared to moderate continuous training in improving vascular parameters in inactive adults. Lipids in Health and Disease, 18(1), 42.
Reitzner, S. M., et al. (2023). Molecular profiling of high-level athlete skeletal muscle after acute endu-rance or resistance exercise – A systems biology approach. Molecular Metabolism, 79, 101857.
Rosa, G., Fortes, M. S. R., & Mello, D. B. (2016). Concurrent training decreases cortisol but not zinc con-centrations: effects of distinct exercise protocols. Scientifica, 7643016.
Schroeder, E. C., et al. (2019). Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PLoS ONE, 14(1), e0210292.
Thomas, J. R., Nelson, J. K., & Silverman, S. J. (2010). Research methods in physical activity. Human Kinetics Publishers.
Wilund, K. R., et al. (2009). Effects of endurance exercise training on markers of cholesterol absorption and synthesis. Physiological Research, 58(4).
W.M.A. (2008). Declaration of Helsinki. Ethical principles for medical research involving human subje-cts. 59th WMA General Assembly, Seoul.
Yavari, A., et al. (2012). Effect of aerobic exercise, resistance training or combined training on gly-caemic control and cardiovascular risk factors in patients with type 2 diabetes. Biology of Sport, 29(2), 135.
Yavari, A., et al. (2012). Effect of different kinds of training on glycemic control and cardiovascular risk factors in patients with type 2 diabetes. Biology of Sport, 29(2).
Zhang, F., Moritz, S., Lin, J., Tian, H., & Jun, W. (2023). The effect, mechanism and influencing factors of concurrent strength and endurance training with different sequences. Beijing Sport University, 1-25.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Guilherme Rosa, Danielli Mello, Rodrigo Gomes de Souza Vale, Giullio César Pereira Salustiano Mallen da Silva, Claudio Melibeu Bentes, Fabrizio Di Masi, Ravini Sodré, Norma Cláudia de Macedo Souza Santos, Marcos Fortes, Estélio H. M. Dantas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess