Efectos del rango de movimiento y el torque sobre la hipertrofia muscular. Una revisión sistemática
DOI:
https://doi.org/10.47197/retos.v74.111528Palabras clave:
Entrenamiento con cargas, entrenamiento de fuerza, masa muscular, perfil de resistencia, variables de entrenamientoResumen
Introducción: Entre los múltiples factores que afectan al incremento de la masa muscular se encuentran las variables de entrenamiento, entre ellas se hallan el rango de movimiento y el torque o perfil de resistencia del ejercicio.
Objetivos: Examinar los efectos del rango de movimiento y el torque sobre la hipertrofia muscular y como la interrelación entre ambas variables pueden afectar al aumento de la masa muscular.
Métodos: Pubmed y Web of Science fueron las bases de datos en las que se realizó la búsqueda bibliográfica.
Resultados: Tras la identificación y filtrado de artículos, diecisiete artículos fueron incluidos en la revisión final. Para establecer el grado de validez de los artículos se aplicó la escala PEDro.
Discusión: Los efectos del rango de movimiento sobre la hipertrofia son diferentes en función de si el rango de movimiento parcial se produce en acortamiento o estiramiento muscular. El rango de movimiento parcial en acortamiento obtuvo peores resultados que el rango completo o el parcial en estiramiento. Respecto a los efectos del torque, la limitada evidencia actual solo permite establecer que el rango de movimiento debe pasar por la zona de mayor torque del ejercicio para maximizar la hipertrofia.
Conclusiones: Parece ser clave para la hipertrofia que el rango de movimiento pase por el estiramiento muscular y a su vez por la zona de mayor torque del ejercicio.
Referencias
Bagley, J. R., Burghardt, K. J., McManus, R., Howlett, B., Costa, P. B., Coburn, J. W., Arevalo, J. A., Malek, M. H., & Galpin, A. J. (2020). Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men. J Strength Cond Res, 34(6), 1574-1580. https://doi.org/10.1519/jsc.0000000000003185
Bloomquist, K., Langberg, H., Karlsen, S., Madsgaard, S., Boesen, M., & Raastad, T. (2013). Effect of range of motion in heavy load squatting on muscle and tendon adaptations. Eur J Appl Physiol, 113(8), 2133-2142. https://doi.org/10.1007/s00421-013-2642-7
Fry, A. C., Smith, J. C., & Schilling, B. K. (2003). Effect of knee position on hip and knee torques during the barbell squat. J Strength Cond Res, 17(4), 629-633. https://doi.org/10.1519/1533-4287(2003)017<0629:eokpoh>2.0.co;2
Goldspink, G. (1999). Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat, 194 ( Pt 3)(Pt 3), 323-334. https://doi.org/10.1046/j.1469-7580.1999.19430323.x
Gordon, A. M., Huxley, A. F., & Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol, 184(1), 170-192. https://doi.org/10.1113/jphysiol.1966.sp007909
Goto, M., Maeda, C., Hirayama, T., Terada, S., Nirengi, S., Kurosawa, Y., Nagano, A., & Hamaoka, T. (2019). Partial range of motion exercise is effective for facilitating muscle hypertrophy and function through sustained intramuscular hypoxia in young trained men [Article]. Journal of Strength and Conditioning Research, 33(5), 1286-1294. https://doi.org/10.1519/jsc.0000000000002051
Goto, M., Maeda, C., Hirayama, T., Terada, S., Nirengi, S., Kurosawa, Y., Nagano, A., & Hamaoka, T. (2019). Partial Range of Motion Exercise Is Effective for Facilitating Muscle Hypertrophy and Function Through Sustained Intramuscular Hypoxia in Young Trained Men. J Strength Cond Res, 33(5), 1286-1294. https://doi.org/10.1519/jsc.0000000000002051
Grgic, J., McLlvenna, L. C., Fyfe, J. J., Sabol, F., Bishop, D. J., Schoenfeld, B. J., & Pedisic, Z. (2019). Does Aerobic Training Promote the Same Skeletal Muscle Hypertrophy as Resistance Training? A Systematic Review and Meta-Analysis. Sports Med, 49(2), 233-254. https://doi.org/10.1007/s40279-018-1008-z
Grgic, J., Schoenfeld, B. J., Orazem, J., & Sabol, F. (2022). Effects of resistance training performed to repetition failure or non-failure on muscular strength and hypertrophy: A systematic review and meta-analysis. J Sport Health Sci, 11(2), 202-211. https://doi.org/10.1016/j.jshs.2021.01.007
Haff, G. G., & Triplett, N. T. (2017). Principios del entrenamiento de la fuerza y del acondicionamiento físico, NSCA. Ciudad de México : Editorial Paidotribo México.
Hartmann, H., Wirth, K., & Klusemann, M. (2013). Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load. Sports Med, 43(10), 993-1008. https://doi.org/10.1007/s40279-013-0073-6
Haun, C. T., Vann, C. G., Osburn, S. C., Mumford, P. W., Roberson, P. A., Romero, M. A., Fox, C. D., Johnson, C. A., Parry, H. A., Kavazis, A. N., Moon, J. R., Badisa, V. L. D., Mwashote, B. M., Ibeanusi, V., Young, K. C., & Roberts, M. D. (2019). Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PLoS One, 14(6), e0215267. https://doi.org/10.1371/journal.pone.0215267
Haun, C. T., Vann, C. G., Roberts, B. M., Vigotsky, A. D., Schoenfeld, B. J., & Roberts, M. D. (2019). A Critical Evaluation of the Biological Construct Skeletal Muscle Hypertrophy: Size Matters but So Does the Measurement. Front Physiol, 10, 247. https://doi.org/10.3389/fphys.2019.00247
Kassiano, W., Costa, B., Kunevaliki, G., Soares, D., Zacarias, G., Manske, I., Takaki, Y., Ruggiero, M. F., Stavinski, N., Francsuel, J., Tricoli, I., Carneiro, M. A. S., & Cyrino, E. S. (2023). Greater Gastrocnemius Muscle Hypertrophy After Partial Range of Motion Training Performed at Long Muscle Lengths [Randomized Controlled Trial;]. Journal of Strength and Conditioning Research, 37(9), 1746-1753. https://doi.org/10.1519/jsc.0000000000004460
Kassiano, W., Costa, B., Nunes, J. P., Ribeiro, A. S., Schoenfeld, B. J., & Cyrino, E. S. (2023). Which ROMs Lead to Rome? A Systematic Review of the Effects of Range of Motion on Muscle Hypertrophy [Review]. Journal of Strength and Conditioning Research, 37(5), 1135-1144. https://doi.org/10.1519/jsc.0000000000004415
Kubo, K., Ikebukuro, T., & Yata, H. (2019). Effects of squat training with different depths on lower limb muscle volumes. Eur J Appl Physiol, 119(9), 1933-1942. https://doi.org/10.1007/s00421-019-04181-y
Kulig, K., Andrews, J. G., & Hay, J. G. (1984). Human Strength Curves. Exercise and Sport Sciences Reviews, 12(1), 417-466. https://journals.lww.com/acsm-essr/fulltext/1984/01000/human_strength_curves.14.aspx
Larsen, S., Sandvik Kristiansen, B., Swinton, P. A., Wolf, M., Bao Fredriksen, A., Nygaard Falch, H., van den Tillaar, R., & Østerås Sandberg, N. (2025). The effects of hip flexion angle on quadriceps femoris muscle hypertrophy in the leg extension exercise. J Sports Sci, 43(2), 210-221. https://doi.org/10.1080/02640414.2024.2444713
Maeo, S., Huang, M., Wu, Y., Sakurai, H., Kusagawa, Y., Sugiyama, T., Kanehisa, H., & Isaka, T. (2021). Greater Hamstrings Muscle Hypertrophy but Similar Damage Protection after Training at Long versus Short Muscle Lengths. Med Sci Sports Exerc, 53(4), 825-837. https://doi.org/10.1249/mss.0000000000002523
Maeo, S., Wu, Y., Huang, M., Sakurai, H., Kusagawa, Y., Sugiyama, T., Kanehisa, H., & Isaka, T. (2023). Triceps brachii hypertrophy is substantially greater after elbow extension training performed in the overhead versus neutral arm position. Eur J Sport Sci, 23(7), 1240-1250. https://doi.org/10.1080/17461391.2022.2100279
Martins-Costa, H. C., Lacerda, L. T., Diniz, R. C. R., Lima, F. V., Andrade, A. G. P., Peixoto, G. H., Gomes, M. C., Lanza, M. B., Bemben, M. G., & Chagas, M. H. (2022). Equalization of Training Protocols by Time Under Tension Determines the Magnitude of Changes in Strength and Muscular Hypertrophy. J Strength Cond Res, 36(7), 1770-1780. https://doi.org/10.1519/jsc.0000000000004004
McMahon, G. E., Morse, C. I., Burden, A., Winwood, K., & Onambele, G. L. (2014). Impact of range of motion during ecologically valid resistance training protocols on muscle size, subcutaneous fat, and strength [Article]. Journal of Strength and Conditioning Research, 28(1), 245-255. https://doi.org/10.1519/JSC.0b013e318297143a
McMahon, G. E., Morse, C. I., Burden, A., Winwood, K., & Onambélé, G. L. (2014). Muscular adaptations and insulin-like growth factor-1 responses to resistance training are stretch-mediated. Muscle Nerve, 49(1), 108-119. https://doi.org/10.1002/mus.23884
Nunes, J. P., Jacinto, J. L., Ribeiro, A. S., Mayhew, J. L., Nakamura, M., Capel, D. M. G., Santos, L. R., Santos, L., Cyrino, E. S., & Aguiar, A. F. (2020). Placing Greater Torque at Shorter or Longer Muscle Lengths? Effects of Cable vs. Barbell Preacher Curl Training on Muscular Strength and Hypertrophy in Young Adults. Int J Environ Res Public Health, 17(16). https://doi.org/10.3390/ijerph17165859
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas [10.1016/j.recesp.2021.06.016]. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016
Pallarés, J. G., Hernández-Belmonte, A., Martínez-Cava, A., Vetrovsky, T., Steffl, M., & Courel-Ibáñez, J. (2021). Effects of range of motion on resistance training adaptations: A systematic review and meta-analysis. Scand J Med Sci Sports, 31(10), 1866-1881. https://doi.org/10.1111/sms.14006
Paul , A. C., & Rosenthal , N. (2002). Different modes of hypertrophy in skeletal muscle fibers. Journal of Cell Biology, 156(4), 751-760. https://doi.org/10.1083/jcb.200105147
Pedrosa, G. F., Lima, F. V., Schoenfeld, B. J., Lacerda, L. T., Simoes, M. G., Pereira, M. R., Diniz, R. C. R., & Chagas, M. H. (2022). Partial range of motion training elicits favorable improvements in muscular adaptations when carried out at long muscle lengths [Article]. European Journal of Sport Science, 22(8), 1250-1260. https://doi.org/10.1080/17461391.2021.1927199
Pedrosa, G. F., Simoes, M. G., Figueiredo, M. O. C., Lacerda, L. T., Schoenfeld, B. J., Lima, F. V., Chagas, M. H., & Diniz, R. C. R. (2023). Training in the Initial Range of Motion Promotes Greater Muscle Adaptations Than at Final in the Arm Curl [Article]. Sports, 11(2), Article 39. https://doi.org/10.3390/sports11020039
Pinto, R. S., Gomes, N., Radaelli, R., Botton, C. E., Brown, L. E., & Bottaro, M. (2012). EFFECT OF RANGE OF MOTION ON MUSCLE STRENGTH AND THICKNESS [Article]. Journal of Strength and Conditioning Research, 26(8), 2140-2145. https://doi.org/10.1519/JSC.0b013e31823a3b15
Refalo, M. C., Helms, E. R., Trexler, E. T., Hamilton, D. L., & Fyfe, J. J. (2023). Influence of Resistance Training Proximity-to-Failure on Skeletal Muscle Hypertrophy: A Systematic Review with Meta-analysis. Sports Med, 53(3), 649-665. https://doi.org/10.1007/s40279-022-01784-y
Reggiani, C., & Schiaffino, S. (2020). Muscle hypertrophy and muscle strength: dependent or independent variables? A provocative review. Eur J Transl Myol, 30(3), 9311. https://doi.org/10.4081/ejtm.2020.9311
Russell, B., Motlagh, D., & Ashley, W. W. (2000). Form follows function: how muscle shape is regulated by work. J Appl Physiol (1985), 88(3), 1127-1132. https://doi.org/10.1152/jappl.2000.88.3.1127
Sato, S., Yoshida, R., Kiyono, R., Yahata, K., Yasaka, K., Nunes, J. P., Nosaka, K., & Nakamura, M. (2021). Elbow Joint Angles in Elbow Flexor Unilateral Resistance Exercise Training Determine Its Effects on Muscle Strength and Thickness of Trained and Non-trained Arms [Article]. Frontiers in Physiology, 12, Article 734509. https://doi.org/10.3389/fphys.2021.734509
Schoenfeld, B. (2016). Science and Development of Muscle Hypertrophy. In B. Schoenfeld (Ed.), Science and Development of Muscle Hypertrophy (1 ed.). Human Kinetics. https://www.humankineticslibrary.com/encyclopedia?docid=b-9781492595847
Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res, 24(10), 2857-2872. https://doi.org/10.1519/JSC.0b013e3181e840f3
Schoenfeld, B. J., & Grgic, J. (2020). Effects of range of motion on muscle development during resistance training interventions: A systematic review [Review]. Sage Open Medicine, 8, Article 2050312120901559. https://doi.org/10.1177/2050312120901559
Simposio Internacional de Actualizaciones en Entrenamiento de la Fuerza. (2018). XI Simposio Internacional de Actualizaciones en Entrenamiento de la Fuerza = XI International Symposium in Strength Training (P. J. Benito Peinado, Ed.). Madrid : Universidad Politécnica de Madrid.
Stamatakis, E., Lee, I. M., Bennie, J., Freeston, J., Hamer, M., O'Donovan, G., Ding, D., Bauman, A., & Mavros, Y. (2018). Does Strength-Promoting Exercise Confer Unique Health Benefits? A Pooled Analysis of Data on 11 Population Cohorts With All-Cause, Cancer, and Cardiovascular Mortality Endpoints. Am J Epidemiol, 187(5), 1102-1112. https://doi.org/10.1093/aje/kwx345
Valamatos, M. J., Tavares, F., Santos, R. M., Veloso, A. P., & Mil-Homens, P. (2018). Influence of full range of motion vs. equalized partial range of motion training on muscle architecture and mechanical properties. Eur J Appl Physiol, 118(9), 1969-1983. https://doi.org/10.1007/s00421-018-3932-x
Wackerhage, H., Schoenfeld, B. J., Hamilton, D. L., Lehti, M., & Hulmi, J. J. (2019). Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985), 126(1), 30-43. https://doi.org/10.1152/japplphysiol.00685.2018
Zabaleta-Korta, A., Fernandez-Pena, E., Torres-Unda, J., Frances, M., Zubillaga, A., & Santos-Concejero, J. (2023). Regional Hypertrophy: The Effect of Exercises at Long and Short Muscle Lengths in Recreationally Trained Women. Journal of human kinetics, 87, 259-270. https://doi.org/10.5114/jhk/163561
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Armero-Sotillo A., Benito P.J.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess