Protocolo metodológico de la carrera en cinta mediante IMU en personas sanas. Revisión de alcance
DOI:
https://doi.org/10.47197/retos.v73.116214Palabras clave:
Biomecánica, carrera, cinemática, dispositivo portátil, prueba en cinta rodanteResumen
Introducción: Correr es una actividad popular y accesible con beneficios para la salud, aunque con riesgo de lesiones musculoesqueléticas. El análisis biomecánico permite identificar factores de riesgo y orientar la prevención. Las unidades de medida inercial (IMU) han potenciado la evaluación de la técnica de carrera.
Objetivo: Este estudio tubo cómo objetivo revisar el protocolo metodológico empleado en el análisis cinemático de la carrera a pie de corredores recreacionales utilizando unidades de medición inercial en cinta rodante y en personas sanos
Metodología: Se siguieron las guías PRISMA-ScR. La búsqueda se realizó en Medline/PubMed, Web of Science, SportDiscus y SafeJournal. Se incluyeron estudios descriptivos, de fiabilidad, validez e intervención con IMU en personas sanas. La calidad metodológica se evaluó con el índice de Downs & Black modificado y con el coeficiente Kappa de Cohen.
Resultados: De 6.169 registros, 30 estudios cumplieron los criterios. Se analizaron 31 dispositivos con frecuencias entre 1600 Hz y 1 Hz. La tibia fue la localización más frecuente. La muestra total incluyó 553 hombres (66,2 %) y 282 mujeres (33,8 %). Los parámetros más estudiados fueron aceleración, velocidad angular y variables espaciotemporales como cadencia y tiempo de contacto.
Conclusiones: Las IMU en cinta rodante son válidas para medir parámetros cinemáticos y aportar información sobre técnica y rendimiento. La colocación de sensores condiciona la precisión. Las limitaciones fueron la baja representación femenina, el predominio de corredores recreativos y las velocidades reducidas. Futuras investigaciones deben equilibrar sexos y comparar localizaciones.
Referencias
Abbasi, A., Yazdanbakhsh, F., Tazji, M. K., Ataabadi, P. A., Svoboda, Z., Nazarpour, K., & Vieira, M. F. (2020). A comparison of coordination and its variability in lower extremity segments during treadmill and overground running at different speeds. Gait & Posture, 79, 139–144. https://doi.org/10.1016/j.gaitpost.2020.04.022
Akhade, V., & Muniyappanavar, N. (2014). The effect of running training on pulmonary function tests. National Journal of Physiology Pharmacy and Pharmacology, 4(2), 168. https://doi.org/10.5455/njppp.2014.4.151220131
Aroganam, G., Manivannan, N., & Harrison, D. (2019). Review on wearable technology sensors used in consumer sport applications. Sensors, 19(9) 1983. https://doi.org/10.3390/s19091983
Benson, L. C., Räisänen, A. M., Clermont, C. A., & Ferber, R. (2022). Is this the real life, or is this just laboratory? A scoping review of IMU-based running gait analysis. Sensors, 22(5) 1722. https://doi.org/10.3390/s22051722
Bramah, C., Preece, S. J., Gill, N., & Herrington, L. (2018). Is there a pathological gait associated with common soft tissue running injuries? The American Journal of Sports Medicine, 46(12), 3023-3031. https://doi.org/10.1177/0363546518793657
Ceyssens, L., Vanelderen, R., Barton, C., Malliaras, P., & Dingenen, B. (2019). Biomechanical risk factors associated with running-related injuries: A systematic review. Sports Medicine, 49(7), 1095-1115. https://doi.org/10.1007/s40279-019-01110-z
Chabot, M., Thibault-Piedboeuf, A., Nault, M., Roy, J., Dixon, P. C., & Simoneau, M. (2024). Influence of sudden changes in foot strikes on loading rate variability in runners. Sensors, 24(24), 8163. https://doi.org/10.3390/s24248163
Clermont, C. A., Benson, L. C., Osis, S. T., Kobsar, D., & Ferber, R. (2018). Running patterns for male and female competitive and recreational runners based on accelerometer data. Journal of Sports Sciences, 37(2), 204–211. https://doi.org/10.1080/02640414.2018.1488518
Darch, L., Chalmers, S., Causby, R., & Arnold, J. (2023). Effect of running-induced fatigue on tibial acceleration and the role of lower limb muscle strength, power, and endurance. Medicine and Science in Sports and Exercise, 55(3), 581–589. https://doi.org/10.1249/MSS.0000000000003062
Day, E. M., Alcantara, R. S., McGeehan, M. A., Grabowski, A. M., & Hahn, M. E. (2021). Low-pass filter cutoff frequency affects sacral-mounted inertial measurement unit estimations of peak vertical ground reaction force and contact time during treadmill running. Journal of Biomechanics, 119, 110323. https://doi.org/10.1016/j.jbiomech.2021.110323
Dimmick, H. L., Van Rassel, C. R., MacInnis, M. J., & Ferber, R. (2022). Between-day reliability of commonly used IMU features during a fatiguing run and the effect of speed. Sensors, 22(11), 4129. https://doi.org/10.3390/s22114129
Downs, S. H., & Black, N. (1998). The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. Journal of Epidemiology and Community Health, 52(6), 377-384. https://doi.org/10.1136/jech.52.6.377
Doyle, E. W., Doyle, T. L. A., Bonacci, J., & Fuller, J. T. (2024). Sensor location influences the associations between IMU and motion capture measurements of impact landing in healthy male and female runners at multiple running speeds. Sports Biomechanics, 1-15. https://doi.org/10.1080/14763141.2023.2298954
Echeverry, L. L. G., Henao, A. M. J., Molina, M. A. R., Restrepo, S. M. V., Velásquez, C. A. P., & Bolívar, G. J. S. (2018). Human motion capture and analysis systems: a systematic review/Sistemas de captura y análisis de movimiento cinemático humano: una revisión sistemática. Prospectiva, 16(2), 24-34. https://doi.org/10.15665/rp.v16i2.1587
England, S. A., & Granata, K. P. (2007). The influence of gait speed on local dynamic stability of walking. Gait & Posture, 25(2), 172-178. https://doi.org/10.1016/j.gaitpost.2006.03.003
Farley, C. T., & González, O. (1996). Leg stiffness and stride frequency in human running. Journal of Biomechanics, 29(2), 181-186. https://doi.org/10.1016/0021-9290(95)00029-1
Fellin, R. E., Manal, K., & Davis, I. S. (2010). Comparison of lower extremity kinematic curves during overground and treadmill running. Journal of Applied Biomechanics, 26(4), 407-414. https://doi.org/10.1123/jab.26.4.407
Fohrmann, D., Hamacher, D., Sanchez-Alvarado, A., Potthast, W., Mai, P., Willwacher, S., & Hollander, K. (2022). Reliability of running stability during treadmill and overground running. Sensors, 23(1), 347. https://doi.org/10.3390/s23010347
Folland, J. P., Allen, S. J., Black, M. I., Handsaker, J. C., & Forrester, S. E. (2017). Running technique is an important component of running economy and performance. Medicine & Science in Sports & Exercise, 49(7), 1412-1423. https://doi.org/10.1249/mss.0000000000001245
Fukuchi, R. K., Fukuchi, C. A., & Duarte, M. (2017). A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics. PeerJ, 5, e3298. https://doi.org/10.7717/peerj.3298
García-Pérez, J. A., Pérez-Soriano, P., Belloch, S. L., Lucas-Cuevas, Á. G., & Sánchez-Zuriaga, D. (2014). Effects of treadmill running and fatigue on impact acceleration in distance running. Sports Biomechanics, 13(3), 259–266. https://doi.org/10.1080/14763141.2014.909527
García-Pinillos, F., Chicano-Gutiérrez, J. M., Ruiz-Malagón, E. J., & Roche-Seruendo, L. E. (2020). Influence of RunScribeTM placement on the accuracy of spatiotemporal gait characteristics during running. Proceedings of the Institution of Mechanical Engineers, Part P-Journal of Sports Engineering and Technology, 234(1), 11–18. https://doi.org/10.1177/1754337119876513
Gaudette, L. W., Bradach, M. M., De Souza, J. R., Junior, Heiderscheit, B., Johnson, C. D., Posilkin, J., Rauh, M. J., Sara, L. K., Wasserman, L., Hollander, K., & Tenforde, A. S. (2022). Clinical application of gait retraining in the injured runner. Journal of Clinical Medicine, 11(21), 6497. https://doi.org/10.3390/jcm11216497
Glauberman, M. D., & Cavanagh, P. R. (2014). Rearfoot strikers have smaller resultant tibial accelerations at foot contact than non-rearfoot strikers. Journal of Foot and Ankle Research, 7(S1). https://doi.org/10.1186/1757-1146-7-s1-a93
Gómez-Carmona, C. D., Bastida-Castillo, A., González-Custodio, A., Olcina, G., & Pino-Ortega, J. (2019). Using an inertial device (WIMU PRO) to quantify neuromuscular load in running: Reliability, convergent validity, and influence of type of surface and device location. The Journal of Strength and Conditioning Research, 34(2), 365–373. https://doi.org/10.1519/JSC.0000000000003106
Hamill, J., Caldwell, G. E., & Derrick, T. R. (1997). Reconstructing digital signals using shannon’s sampling theorem. Journal of Applied Biomechanics, 13(2), 226–238. https://doi.org/10.1123/jab.13.2.226
Hernandez, V., Dadkhah, D., Babakeshizadeh, V., & Kulić, D. (2021). Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach. Gait & Posture, 83, 185–193. https://doi.org/10.1016/j.gaitpost.2020.10.026
Horsley, B. J., Tofari, P. J., Halson, S. L., Kemp, J. G., Dickson, J., Maniar, N., & Cormack, S. J. (2021). Does site matter? Impact of inertial measurement unit placement on the validity and reliability of stride variables during running: A systematic review and meta-analysis. Sports Medicine, 51(7), 1449–1489. https://doi.org/10.1007/s40279-021-01443-8
Hughes, G. T. G., Camomilla, V., Vanwanseele, B., Harrison, A. J., Fong, D. T. P., & Bradshaw, E. J. (2021). Novel technology in sports biomechanics: some words of caution. Sports Biomechanics, 23(4), 393–401. https://doi.org/10.1080/14763141.2020.1869453
Jaén-Carrillo, D., Ruiz-Alias, S. A., Olaya-Cuartero, J., & García-Pinillos, F. (2024). Stryd biomechanical parameters as indicators of running economy and performance. Proceedings of the Institution of Mechanical Engineers Part P-Journal of Sports Engineering and Technology. https://doi.org/10.1177/17543371231220760
Johnson, C. D., Outerleys, J., Tenforde, A. S., & Davis, I. S. (2020a). A comparison of attachment methods of skin mounted inertial measurement units on tibial accelerations. Journal of Biomechanics, 113, 110118. https://doi.org/10.1016/j.jbiomech.2020.110118
Johnson, C. D., Tenforde, A. S., Outerleys, J., Reilly, J., & Davis, I. S. (2020b). Impact-Related ground reaction forces are more strongly associated with some running injuries than others. The American Journal of Sports Medicine, 48(12), 3072-3080. https://doi.org/10.1177/0363546520950731
Korakakis, V., Whiteley, R., Tzavara, A., & Malliaropoulos, N. (2017). The effectiveness of extracorporeal shockwave therapy in common lower limb conditions: A systematic review including quantification of patient-rated pain reduction. British Journal of Sports Medicine, 52(6), 387-407. https://doi.org/10.1136/bjsports-2016-097347
Lopes, A. D., Mascarinas, A., & Hespanhol, L. (2023). Are alterations in running biomechanics associated with running injuries? A systematic review with meta-analysis. Brazilian Journal Of Physical Therapy, 27(4), 100538. https://doi.org/10.1016/j.bjpt.2023.100538
Lee, Y. S., Ho, C. S., Shih, Y., Chang, S. Y., Róbert, F. J., & Shiang, T. Y. (2015). Assessment of walking, running, and jumping movement features by using the inertial measurement unit. Gait & Posture, 41(4), 877–881. https://doi.org/10.1016/j.gaitpost.2015.03.007
Lieberman, D. E., Warrener, A. G., Wang, J., & Castillo, E. R. (2015). Effects of stride frequency and foot position at landing on braking force, hip torque, impact peak force and the metabolic cost of running in humans. Journal of Experimental Biology, 218(21), 3406-3414. https://doi.org/10.1242/jeb.125500
Matijevich, E. S., Branscombe, L. M., Scott, L. R., & Zelik, K. E. (2019). Ground reaction force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: Implications for science, sport and wearable tech. PLoS ONE, 14(1), e0210000. https://doi.org/10.1371/journal.pone.0210000
Mason, R., Barry, G., Robinson, H., O’Callaghan, B., Lennon, O., Godfrey, A., & Stuart, S. (2023). Validity and reliability of the DANU sports system for walking and running gait assessment. Physiological Measurement, 44(11), 115001. https://doi.org/10.1088/1361-6579/ad04b4
Miqueleiz, U., Aguado-Jimenez, R., Lecumberri, P., & Gorostiaga, E. M. (2024a). Consistency of sex-based differences between treadmill and overground running using an inertial measurement unit (IMU). Journal of Biomechanics, 172, 112202. https://doi.org/10.1016/j.jbiomech.2024.112202
Miqueleiz, U., Aguado-Jimenez, R., Lecumberri, P., Garcia-Tabar, I., & Gorostiaga, E. M. (2024b). Reliability of Xsens inertial measurement unit in measuring trunk accelerations: a sex-based differences study during incremental treadmill running. Frontiers in Sports and Active Living, 6. https://doi.org/10.3389/fspor.2024.1357353
Oficial-Casado, F., Uriel, J., Jimenez-Perez, I., Goethel, M. F., Pérez-Soriano, P., & Priego-Quesada, J. I. (2022). Consistency of pacing profile according to performance level in three different editions of the Chicago, London, and Tokyo marathons. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-14868-6
Oja, P., Titze, S., Kokko, S., Kujala, U. M., Heinonen, A., Kelly, P., Koski, P., & Foster, C. (2015). Health benefits of different sport disciplines for adults: systematic review of observational and intervention studies with meta-analysis. British Journal of Sports Medicine, 49(7), 434-440. https://doi.org/10.1136/bjsports-2014-093885
Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5(1). https://doi.org/10.1186/s13643-016-0384-4
Pareja-Cano, Á., Arjona, J. M., Caulfield, B., & Cuesta-Vargas, A. (2024). Parameterization of biomechanical variables through inertial measurement units (IMUs) in occasional healthy runners. Sensors, 24(7), 2191. https://doi.org/10.3390/s24072191
Patoz, A., Lussiana, T., Breine, B., Gindre, C., & Malatesta, D. (2022). A single sacral-mounted inertial measurement unit to estimate peak vertical ground reaction force, contact time, and flight time in running. Sensors, 22(3). https://doi.org/10.3390/s22030784
Perpiñá-Martínez, S., Arguisuelas-Martínez, M. D., Pérez-Domínguez, B., Nacher-Moltó, I., & Martínez-Gramage, J. (2023). Differences between sexes and speed levels in pelvic 3D kinematic patterns during running using an inertial measurement unit (IMU). International Journal of Environmental Research and Public Health, 20(4), 3631. https://doi.org/10.3390/ijerph20043631
Poitras, I., Dupuis, F., Bielmann, M., Campeau-Lecours, A., Mercier, C., Bouyer, L., & Roy, J. (2019). Validity and reliability of wearable sensors for joint angle estimation: A systematic review. Sensors, 19(7), 1555. https://doi.org/10.3390/s19071555
Provot, T., Chiementin, X., Bolaers, F., & Murer, S. (2019). Effect of running speed on temporal and frequency indicators from wearable MEMS accelerometers. Sports Biomechanics, 20(7), 831-843. https://doi.org/10.1080/14763141.2019.1607894
Quan, W., Zhou, H., Xu, D., Li, S., Baker, J. S., & Gu, Y. (2021). Competitive and recreational running kinematics examined using principal components analysis. Healthcare, 9(10), 1321. https://doi.org/10.3390/healthcare9101321
Rantalainen, T., Hart, N. H., Nimphius, S., & Wundersitz, D. W. (2016). Associations between step duration variability and inertial measurement unit derived gait characteristics. Journal of Applied Biomechanics, 32(4), 401–406. https://doi.org/10.1123/jab.2015-0266
Reenalda, J., Zandbergen, M. A., Harbers, J. H. D., Paquette, M. R., & Milner, C. E. (2021). Detection of foot contact in treadmill running with inertial and optical measurement systems. Journal of Biomechanics, 121, 110419. https://doi.org/10.1016/j.jbiomech.2021.110419
Riglet, L., Orliac, B., Delphin, C., Leonard, A., Eby, N., Ornetti, P., Laroche, D., & Gueugnon, M. (2024). Validity and test–retest reliability of spatiotemporal running parameter measurement using embedded inertial measurement unit insoles. Sensors, 24(16), 5435. https://doi.org/10.3390/s24165435
Rowlands, A. V., Stone, M. R., & Eston, R. G. (2007). Influence of speed and step frequency during walking and running on motion sensor output. Medicine and Science in Sports and Exercise, 39(4), 716–727. https://doi.org/10.1249/mss.0b013e318031126c
Ruiz-Malagón, E. J., García-Pinillos, F., Molina-Molina, A., Soto-Hermoso, V. M., & Ruiz-Alias, S. A. (2023). RunScribe sacral gait LabTM validation for measuring pelvic kinematics during human locomotion at different speeds. Sensors, 23(5), 2604. https://doi.org/10.3390/s23052604
Sheerin, K. R., Reid, D., Taylor, D., & Besier, T. F. (2020). The effectiveness of real-time haptic feedback gait retraining for reducing resultant tibial acceleration with runners. Physical Therapy in Sport, 43, 173–180. https://doi.org/10.1016/j.ptsp.2020.03.001
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169 (7), 467–473). American College of Physicians. https://doi.org/10.7326/M18-0850
Uno, Y., Ogasawara, I., Konda, S., Yoshida, N., Otsuka, N., Kikukawa, Y., Tsujii, A., & Nakata, K. (2023). Validity of spatio-temporal gait parameters in healthy young adults using a motion-sensor-based gait analysis system (ORPHE ANALYTICS) during walking and running. Sensors, 23(1). https://doi.org/10.3390/s23010331
Van Hooren, B., Fuller, J. T., Buckley, J. D., Miller, J. R., Sewell, K., Rao, G., Barton, C., Bishop, C., & Willy, R. W. (2020). Is motorized treadmill running biomechanically comparable to overground running? A systematic review and meta-analysis of cross-over studies. Sports Medicine, 50(4), 785–813. https://doi.org/10.1007/s40279-019-01237-z
Wolski, L., Halaki, M., Hiller, C. E., Pappas, E., & Yan, A. F. (2024). Validity of an Inertial Measurement Unit System to Measure Lower Limb Kinematics at Point of Contact during Incremental High-Speed Running. Sensors, 24(17), 5718. https://doi.org/10.3390/s24175718
Wundersitz, D. W. T., Gastin, P. B., Richter, C., Robertson, S. J., & Netto, K. J. (2014). Validity of a trunk‐mounted accelerometer to assess peak accelerations during walking, jogging and running. European Journal of Sport Science, 15(5), 382–390. https://doi.org/10.1080/17461391.2014.955131
Yang, S., Mohr, C., & Li, Q. (2011). Ambulatory running speed estimation using an inertial sensor. Gait & Posture, 34(4), 462–466. https://doi.org/10.1016/j.gaitpost.2011.06.019
Yang, Y., Wang, L., Su, S., Watsford, M., Wood, L. M., & Duffield, R. (2022). Inertial sensor estimation of initial and terminal contact during in-field running. Sensors, 22(13), 4812. https://doi.org/10.3390/s22134812
Zandbergen, M. A., Reenalda, J., van Middelaar, R. P., Ferla, R. I., Buurke, J. H., & Veltink, P. H. (2022). Drift-free 3D orientation and displacement estimation for quasi-cyclical movements using one inertial measurement unit: Application to running. Sensors, 22(3), 956. https://doi.org/10.3390/s22030956
Zhang, S., Jin, W., & Zhang, Y. (2017). Implementation and complexity analysis of orientation estimation algorithms for human body motion tracking using low-cost sensors. 2017 2nd International Conference on Frontiers of Sensors Technologies (ICFST). https://doi.org/10.1109/icfst.2017.8210471
Zhou, L., Fischer, E., Tunca, C., Brahms, C. M., Ersoy, C., Granacher, U., & Arnrich, B. (2020). How we found our IMU: Guidelines to IMU selection and a comparison of seven IMUs for pervasive healthcare applications. Sensors, 20(15), 4090. https://doi.org/10.3390/s20154090
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Raúl Cejudo-Alba, Xantal Borràs-Boix, Javier Martínez-Gramage

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess