Eficacia de las terapias con láser de baja intensidad y luz polarizada en el tratamiento del síndrome del túnel carpiano en mujeres con diabetes tipo 2
DOI:
https://doi.org/10.47197/retos.v73.116876Palabras clave:
Síndrome del túnel carpiano, terapia con láser de baja intensidad , luz polarizada, diabetes mellitus tipo 2, mujeresResumen
Introducción: El síndrome del túnel carpiano sigue siendo uno de los problemas más comunes entre las mujeres con diabetes.
Objetivo: Este ensayo tuvo como objetivo comparar la eficacia de la terapia con láser de baja intensidad y la luz polarizada en el tratamiento del síndrome del túnel carpiano en mujeres con diabetes tipo 2.
Métodos: Sesenta y seis mujeres fueron asignadas aleatoriamente a tres grupos (n = 22 cada uno): férula de muñeca sola (control), férula más láser de baja intensidad, y férula más luz polarizada durante 10 semanas. Las evaluaciones antes y después del tratamiento incluyeron latencias distales motora y sensitiva del nervio mediano, área transversal, escala árabe de calificación numérica del dolor, fuerza de prensión manual y el Cuestionario de Boston para el Síndrome del Túnel Carpiano (escalas de gravedad de los síntomas y funcional).
Resultados: La terapia con láser de baja intensidad mostró mejoras significativamente mayores que la luz polarizada en la latencia motora del mediano (diferencia media [DM] = −0.27 ms; IC 95% = −0.81 a −0.03; p = 0.04), latencia sensitiva (DM = −0.24 ms; IC 95% = −0.47 a −0.01; p = 0.02), dolor (DM = −0.88; IC 95% = −2.04 a −0.2; p = 0.03), fuerza de prensión (DM = 3.4 kg; IC 95% = 0.51 a 6.82; p = 0.01), gravedad de los síntomas (DM = −4.71; IC 95% = −9.39 a −0.03; p = 0.009), y gravedad funcional (DM = −1.92; IC 95% = −4.15 a −0.13; p = 0.02). Las reducciones del área transversal fueron similares en ambos grupos (DM = −0.33 mm; IC 95% = −1.73 a 1.07; p = 0.94).
Conclusiones: El láser de baja intensidad es más eficaz que la luz polarizada en el tratamiento del síndrome del túnel carpiano en mujeres con diabetes tipo 2.
Referencias
Ahmed, O. F., Elkharbotly, A. M., Taha, N., & others. (2017). Treatment of mild to moderate carpal tun-nel syndrome in patients with diabetic neuropathy using low level laser therapy versus ul-trasound: Controlled comparative study. BBA Clinical, 8, 43–47. https://doi.org/10.1016/j.bbacli.2017.07.001
Alanazy, M. H., Alaboudi, M., Almaari, A., & others. (2019). Translation and validation of the Arabic version of the Boston carpal tunnel syndrome questionnaire. Neurosciences, 24(4), 296–301. https://doi.org/10.17712/nsj.2019.4.20190014
Alghadir, A. H., Anwer, S., & Iqbal, Z. A. (2016). The psychometric properties of an Arabic numeric pain rating scale for measuring osteoarthritis knee pain. Disability and Rehabilitation, 38(24), 2392–2397. https://doi.org/10.3109/09638288.2015.1129441
Ali, M., Elgendy, A., Medhat, A., & others. (2020). Therapeutic and photobiomodulation effects of low-level laser irradiation on Egyptian patients with carpal tunnel syndrome: A placebo-controlled study. Journal of Arab Society for Medical Research, 15(1), 18. https://doi.org/10.4103/jasmr.jasmr_7_20
American Association of Electrodiagnostic Medicine, American Academy of Neurology, & American Academy of Physical Medicine and Rehabilitation. (2002). Practice parameter for electrodiag-nostic studies in carpal tunnel syndrome: Summary statement. Muscle & Nerve, 25(6), 918–922. https://doi.org/10.1002/mus.10185
Bahrami, H., Moharrami, A., Mirghaderi, P., & Mortazavi, S. M. J. (2022). Low-level laser and light ther-apy after total knee arthroplasty improves postoperative pain and functional outcomes: A three-arm randomized clinical trial. Arthroplasty Today, 19, 101066. https://doi.org/10.1016/j.artd.2022.10.016
Bakhtiary, A. H., & Rashidy-Pour, A. (2004). Ultrasound and laser therapy in the treatment of carpal tunnel syndrome. Australian Journal of Physiotherapy, 50(3), 147–151. https://doi.org/10.1016/s0004-9514(14)60152-5
Bohannon, R. W. (2019). Minimal clinically important difference for grip strength: A systematic review. Journal of Physical Therapy Science, 31(1), 75–78. https://doi.org/10.1589/jpts.31.75
Dimitrios, S. (2020). The effectiveness of polarized light in musculoskeletal, skin problems and burns. American Journal of Biomedical Research, 10(2), 159–167. https://doi.org/10.34297/ajbsr.2020.10.001492
Dimitrios, S., & Stasinopoulos, L. (2017). Treatment of carpal tunnel syndrome in pregnancy with po-larized polychromatic non-coherent light (Bioptron light): A preliminary, prospective, open clinical trial. Laser Therapy, 26(4), 289–295. https://doi.org/10.5978/islsm.17-OR-18
Duarte, K. C. N., Soares, T. T., Magri, A. M. P., & others. (2018). Low-level laser therapy modulates de-myelination in mice. Journal of Photochemistry and Photobiology B: Biology, 189, 55–65. https://doi.org/10.1016/j.jphotobiol.2018.09.024
Ekim, A., Armagan, O., Tascioglu, F., & others. (2007). Effect of low level laser therapy in rheumatoid arthritis patients with carpal tunnel syndrome. Swiss Medical Weekly, 137(23–24), 347–352. https://doi.org/10.4414/smw.2007.11581
Feehan, J., Burrows, S. P., Cornelius, L., & others. (2018). Therapeutic applications of polarized light: Tissue healing and immunomodulatory effects. Maturitas, 116, 11–17. https://doi.org/10.1016/j.maturitas.2018.07.009
Góralczyk, K., Szymańska, J., Szot, K., Fisz, J., & Rość, D. (2016). Low-level laser irradiation effect on endothelial cells under conditions of hyperglycemia. Lasers in Medical Science, 31(5), 825–831. https://doi.org/10.1007/s10103-016-1880-4
Joshi, A., Patel, K., Mohamed, A., & others. (2022). Carpal tunnel syndrome: Pathophysiology and com-prehensive guidelines for clinical evaluation and treatment. Cureus, 14(7), e27053. https://doi.org/10.7759/cureus.27053
López-de-Uralde-Villanueva, I., Fernández-de-Las-Peñas, C., Cleland, J. A., & others. (2024). Minimal clinically important differences in hand pain intensity (Numerical Pain Rate Scale) and related-function (Boston Carpal Tunnel Questionnaire) in women with carpal tunnel syndrome. Ar-chives of Physical Medicine and Rehabilitation, 105(1), 67–74. https://doi.org/10.1016/j.apmr.2023.07.018
Mohsen, A. A., Jassim, R. E., Al-Mousawi, S. Q. S., & others. (2025). The effect of rehabilitation exercises accompanied by ultrasound waves in reducing pain and healing from carpal tunnel compres-sion. Retos, 66, 1094–1102. https://doi.org/10.47197/retos.v66.113746
Mostafa, A. O., El-ghaffar, A. A., Hagag, A. A., & others. (2019). Laser therapy versus kinesio taping in treatment of carpal tunnel syndrome in type 2 diabetic patients: Comparative study. IOSR Jour-nal of Nursing and Health Science, 8(4), 19–33. https://www.iosrjournals.org/iosr-jnhs/papers/vol8-issue4/Series-9/C0804091218.pdf
Padua, L., Coraci, D., Erra, C., & others. (2016). Carpal tunnel syndrome: clinical features, diagnosis, and management. The Lancet. Neurology, 15(12), 1273–1284. https://doi.org/10.1016/S1474-4422(16)30231-9
Padua, L., Pazzaglia, C., Caliandro, P., & others. (2008). Carpal tunnel syndrome: Ultrasound, neuro-physiology, clinical and patient-oriented assessment. Clinical Neurophysiology, 119(9), 2064–2069. https://doi.org/10.1016/j.clinph.2008.05.004
Perkins, B. A., Olaleye, D., & Bril, V. (2002). Carpal tunnel syndrome in patients with diabetic polyneu-ropathy. Diabetes Care, 25(3), 565–569. https://doi.org/10.2337/diacare.25.3.565
Postma, J. D., & Kemler, M. A. (2022). The effect of carpal tunnel release on health-related quality of life of 2346 patients over a 5-year period. Journal of Hand Surgery (European Volume), 47(4), 347–352. https://doi.org/10.1177/17531934211045634
Pourmemari, M. H., & Shiri, R. (2016). Diabetes as a risk factor for carpal tunnel syndrome: A system-atic review and meta-analysis. Diabetic Medicine, 33(1), 10–16. https://doi.org/10.1111/dme.12855
Raeissadat, S. A., Rayegani, S. M., Rezaei, S., & others. (2014). The effect of polarized polychromatic noncoherent light (bioptron) therapy on patients with carpal tunnel syndrome. Journal of La-sers in Medical Sciences, 5(1), 39–46. https://applications.emro.who.int/imemrf/j_lasers_med_sci/j_lasers_med_sci_2014_5_1_39_46.pdf
Rayegani, S. M., Bahrami, M. H., Eliaspour, D., & others. (2013). The effects of low intensity laser on clinical and electrophysiological parameters of carpal tunnel syndrome. Journal of Lasers in Medical Sciences, 4(4), 182–189. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282005/pdf/jlms-4-182.pdf
Saadh, M. J., Allela, O. Q. B., Kareem, R. A., & others. (2025). Immune cell dysfunction: A critical player in development of diabetes complications. Current research in translational medicine, 73(3), 103510. https://doi.org/10.1016/j.retram.2025.103510
Sarraf, P., Malek, M., Ghajarzadeh, M., Miri, S., Parhizgar, E., & Emami-Razavi, S. Z. (2014). The best cutoff point for median nerve cross sectional area at the level of carpal tunnel inlet. Acta Medi-ca Iranica, 52(8), 613–618. https://pubmed.ncbi.nlm.nih.gov/25149885/
Sasaki, S., Ikeda, T., Okihara, S. I., & others. (2019). Principles and development of collagen-mediated tissue fusion induced by laser irradiation. Scientific Reports, 9, 9383. https://doi.org/10.1038/s41598-019-45486-4
Sasaki, T., Koyama, T., Kuroiwa, T., & others. (2022). Evaluation of the existing electrophysiological severity classifications in carpal tunnel syndrome. Journal of Clinical Medicine, 11(6), 1685. https://doi.org/10.3390/jcm11061685
Schulz, K. F., Altman, D. G., & Moher, D. (2010). CONSORT 2010 statement: Updated guidelines for re-porting parallel group randomised trials. Journal of Pharmacology and Pharmacotherapeutics, 1(2), 100–107. https://doi.org/10.4103/0976-500X.72352
Sevy, J. O., Sina, R. E., & Varacallo, M. (2023). Carpal tunnel syndrome. In StatPearls. StatPearls Pub-lishing. https://www.ncbi.nlm.nih.gov/books/NBK448179/
Stasinopoulos, D., Stasinopoulos, I., & Johnson, M. I. (2005). Treatment of carpal tunnel syndrome with polarized polychromatic noncoherent light (Bioptron light): A preliminary, prospective, open clinical trial. Photomedicine and Laser Surgery, 23(2), 225–228. https://doi.org/10.1089/pho.2005.23.225
Zimmerman, M., Gottsäter, A., & Dahlin, L. B. (2022). Carpal tunnel syndrome and diabetes—A com-prehensive review. Journal of Clinical Medicine, 11(6), 1674. https://doi.org/10.3390/jcm11061674
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Saher Lotfy Elgayar, Ehab Abdelhalim, Mohamed Gamil Omar, Saad Mohamed Elgendy, Mohamed Bayoumi Ibrahim Bayoumi, Mohammed Youssef Elhamrawy, Nader Ibrahim Elsayed, Tarek M. Youssef

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess