La hipoxia y la oclusión venosa mejoran el rendimiento muscular sin afectar la hormona del crecimiento en deportistas
DOI:
https://doi.org/10.47197/retos.v73.117374Palabras clave:
Entrenamiento en hipoxia, entrenamiento de resistencia con cargas bajas, hipertrofia, lactato en sangre, oclusión venosaResumen
Introducción: El entrenamiento de resistencia mejora la fuerza y el tamaño muscular, pero los métodos de alta carga (>85% 1RM) pueden aumentar el riesgo de lesiones. El entrenamiento de baja carga con hipoxia o restricción del flujo sanguíneo (BFR) ofrece una alternativa más segura, aunque la evidencia comparativa es limitada.
Objetivo: Analizar los efectos de la hipoxia y la BFR sobre los niveles de hormona del crecimiento (GH) en reposo tras cinco semanas de entrenamiento de resistencia con baja carga.
Metodología: Treinta atletas masculinos (19–24 años) fueron asignados a tres grupos: RT (50% 1RM), RT+HPX (50% 1RM con hipoxia, FiO₂ 0.137) y RT+BFR (50% 1RM con BFR). Realizaron extensiones y flexiones de rodilla (3 series de 15 repeticiones, 1 min de descanso) tres veces por semana durante cinco semanas. Se evaluaron el grosor y la fuerza muscular, la GH en reposo y el lactato sanguíneo antes y después del entrenamiento.
Resultados: RT+HPX y RT+BFR mostraron aumentos significativos en el grosor del recto y bíceps femoral. La fuerza mejoró en todos los grupos, siendo mayor la extensión de rodilla en RT+HPX (30.9 ± 16.3%, p=0.047) frente a RT (16.1 ± 7.3%). Los niveles de GH en reposo no difirieron entre grupos (p>0.05). El lactato aumentó significativamente solo en RT+BFR (68.7 ± 57.2%, p=0.018).
Conclusiones: El entrenamiento de baja carga con hipoxia o BFR mejora la fuerza y la hipertrofia muscular, siendo la hipoxia más efectiva para aumentar la fuerza. Se requiere más investigación para aclarar el papel de la GH en reposo en estas adaptaciones.
Referencias
Aghaei, F., Shadmehri, S., Feizollahi, F., Zargani, M., & Arabzadeh, E. (2023). Short-term effects of isometric exercise with local and systemic hypoxia and normoxia on fatigue and muscle fun-ction in trained men. Sport Sciences for Health, 19(2), 553–563. https://doi.org/10.1007/s11332-022-00917-0
Bahamondes-Avila, C., Curilem Gatica, C., Bustos Medina, L., Berral De La Rosa, F., & Salazar, L. A. (2024). Abordaje fisioterapéutico del ejercicio con restricción parcial del flujo sanguíneo. Revisión nar-rativa (Physiotherapeutic approach to exercise with partial restriction of blood flow. Narrative review). Retos, 58, 617–632. https://doi.org/10.47197/retos.v58.99878
Brzycki, M. (1993). Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. Journal of Phys-ical Education, Recreation & Dance, 64(1), 88–90. https://doi.org/10.1080/07303084.1993.10606684
Centner, C., Jerger, S., Lauber, B., Seynnes, O., Friedrich, T., Lolli, D., Gollhofer, A., & König, D. (2022). Low-Load Blood Flow Restriction and High-Load Resistance Training Induce Comparable Changes in Patellar Tendon Properties. Medicine & Science in Sports & Exercise, 54(4), 582–589. https://doi.org/10.1249/MSS.0000000000002824
Chang, H., Yan, J., Lu, G., Chen, B., & Zhang, J. (2023). Muscle strength adaptation between high-load re-sistance training versus low-load blood flow restriction training with different cuff pressure characteristics: A systematic review and meta-analysis. Frontiers in Physiology, 14, 1244292. https://doi.org/10.3389/fphys.2023.1244292
Chikani, V., & Ho, K. K. Y. (2014). Action of GH on skeletal muscle function: Molecular and metabolic mechanisms. Journal of Molecular Endocrinology, 52(1), R107–R123. https://doi.org/10.1530/JME-13-0208
Colapietro, M. A., Lee, J. Z., & Vairo, G. L. (2024). Survey of Blood Flow Restriction Training Applications in Sports Medicine and Performance Practice Across North America. Journal of Strength & Con-ditioning Research, 38(5), 856–863. https://doi.org/10.1519/JSC.0000000000004702
Davis, B. H., Stampley, J. E., Granger, J., Scott, M. C., Allerton, T. D., Johannsen, N. M., Spielmann, G., & Ir-ving, B. A. (2024). Impact of low‐load resistance exercise with and without blood flow re-striction on muscle strength, endurance, and oxidative capacity: A pilot study. Physiological Re-ports, 12(12), e16041. https://doi.org/10.14814/phy2.16041
Fashi, M., & Ahmadizad, S. (2021). Short-term hypoxic resistance training improves muscular perfor-mance in untrained males. Science & Sports, 36(4), 312.e1-312.e6. https://doi.org/10.1016/j.scispo.2020.10.003
Feriche, B., García-Ramos, A., Morales-Artacho, A. J., & Padial, P. (2017). Resistance Training Using Dif-ferent Hypoxic Training Strategies: A Basis for Hypertrophy and Muscle Power Development. Sports Medicine - Open, 3(1), 12. https://doi.org/10.1186/s40798-017-0078-z
Friedmann, B., Kinscherf, R., Borisch, S., Richter, G., Bärtsch, P., & Billeter, R. (2003). Effects of low-resistance/high-repetition strength training in hypoxia on muscle structure and gene expres-sion. Pflügers Archiv - European Journal of Physiology, 446(6), 742–751. https://doi.org/10.1007/s00424-003-1133-9
Gamonales, J. M., Rojas-Valverde, D., Vásquez, J., Martínez-Guardado, I., Azofeifa-Mora, C., Sánchez-Ureña, B., & Ibáñez, S. J. (2023). An Update to a Comprehensive Assessment of the Methods and Effectiveness of Resistance Training in Normobaric Hypoxia for the Development of Strength and Muscular Hypertrophy. Applied Sciences, 13(2), 1078. https://doi.org/10.3390/app13021078
Godfrey, R. J., Madgwick, Z., & Whyte, G. P. (2003). The Exercise-Induced Growth Hormone Response in Athletes: Sports Medicine, 33(8), 599–613. https://doi.org/10.2165/00007256-200333080-00005
Haeffner, A., Déas, O., Mollereau, B., Estaquier, J., Mignon, A., Haeffner-Cavaillon, N., Charpentier, B., Senik, A., & Hirsch, F. (1999). Growth hormone prevents human monocytic cells from Fas-mediated apoptosis by up-regulating Bcl-2 expression. European Journal of Immunology, 29(1), 334–344. https://doi.org/10.1002/(SICI)1521-4141(199901)29:01<334::AID-IMMU334>3.0.CO;2-S
Hamlin, M. J., & Ainslie, P. N. (2010). Prediction of acute mountain sickness and sleep apnea in subjects travelling to and training at altitude [Lincoln University]. https://researcharchive.lincoln.ac.nz/server/api/core/bitstreams/45f491a5-e568-4fda-aeaa-3dd20426ab5e/content
Huang, Z., Yang, S., Li, C., Xie, X., & Wang, Y. (2023). The effects of intermittent hypoxic training on the aerobic capacity of exercisers: A systemic review and meta-analysis. BMC Sports Science, Medi-cine and Rehabilitation, 15(1), 174. https://doi.org/10.1186/s13102-023-00784-3
Hughes, L., Paton, B., Rosenblatt, B., Gissane, C., & Patterson, S. D. (2017). Blood flow restriction training in clinical musculoskeletal rehabilitation: A systematic review and meta-analysis. British Jour-nal of Sports Medicine, 51(13), 1003–1011. https://doi.org/10.1136/bjsports-2016-097071
Iversen, E., Røstad, V., & Larmo, A. (2016). Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. Journal of Sport and Health Science, 5(1), 115–118. https://doi.org/10.1016/j.jshs.2014.12.005
Jagim, A. R., Schuler, J., Szymanski, E., Khurelbaatar, C., Carpenter, M., Fields, J. B., & Jones, M. T. (2024). Acute Responses of Low-Load Resistance Exercise with Blood Flow Restriction. Journal of Functional Morphology and Kinesiology, 9(4), 254. https://doi.org/10.3390/jfmk9040254
Jiang, G., Qin, S., Yan, B., & Girard, O. (2024). Metabolic and hormonal responses to acute high-load re-sistance exercise in normobaric hypoxia using a saturation clamp. Frontiers in Physiology, 15, 1445229. https://doi.org/10.3389/fphys.2024.1445229
Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of Resistance Training: Progression and Exer-cise Prescription: Medicine & Science in Sports & Exercise, 36(4), 674–688. https://doi.org/10.1249/01.MSS.0000121945.36635.61
Kraemer, W. J., Ratamess, N. A., Flanagan, S. D., Shurley, J. P., Todd, J. S., & Todd, T. C. (2017). Under-standing the Science of Resistance Training: An Evolutionary Perspective. Sports Medicine, 47(12), 2415–2435. https://doi.org/10.1007/s40279-017-0779-y
Lauber, B., König, D., Gollhofer, A., & Centner, C. (2021). Isometric blood flow restriction exercise: Acute physiological and neuromuscular responses. BMC Sports Science, Medicine and Rehabilitation, 13(1), 12. https://doi.org/10.1186/s13102-021-00239-7
Laurentino, G., Loenneke, J., Ugrinowitsch, C., Aoki, M., Soares, A., Roschel, H., & Tricoli, V. (2022). Blood-Flow-Restriction-Training-Induced Hormonal Response is not Associated with Gains in Muscle Size and Strength. Journal of Human Kinetics, 83, 235–243. https://doi.org/10.2478/hukin-2022-0095
Lixandrão, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceição, M. S., Damas, F., Libardi, C. A., & Roschel, H. (2018). Magnitude of Muscle Strength and Mass Adaptations Between High-Load Re-sistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Re-striction: A Systematic Review and Meta-Analysis. Sports Medicine, 48(2), 361–378. https://doi.org/10.1007/s40279-017-0795-y
Loenneke, J. P., Wilson, G. J., & Wilson, J. M. (2010). A Mechanistic Approach to Blood Flow Occlusion. International Journal of Sports Medicine, 31(01), 1–4. https://doi.org/10.1055/s-0029-1239499
Machek, S. B., Harris, D. R., Zawieja, E. E., Heileson, J. L., Wilburn, D. T., Radziejewska, A., Chmurzynska, A., Cholewa, J. M., & Willoughby, D. S. (2022). The Impacts of Combined Blood Flow Restriction Training and Betaine Supplementation on One-Leg Press Muscular Endurance, Exercise-Associated Lactate Concentrations, Serum Metabolic Biomarkers, and Hypoxia-Inducible Fac-tor-1α Gene Expression. Nutrients, 14(23), 5040. https://doi.org/10.3390/nu14235040
Manimmanakorn, A., Hamlin, M. J., Ross, J. J., Taylor, R., & Manimmanakorn, N. (2013). Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. Journal of Science and Medicine in Sport, 16(4), 337–342. https://doi.org/10.1016/j.jsams.2012.08.009
Martínez‐Guardado, I., Ramos‐Campo, D. J., Olcina, G. J., Rubio‐Arias, J. A., Chung, L. H., Marín‐Cascales, E., Alcaraz, P. E., & Timón, R. (2019). Effects of high‐intensity resistance circuit‐based training in hypoxia on body composition and strength performance. European Journal of Sport Science, 19(7), 941–951. https://doi.org/10.1080/17461391.2018.1564796
Mennitti, C., Farina, G., Imperatore, A., De Fonzo, G., Gentile, A., La Civita, E., Carbone, G., De Simone, R. R., Di Iorio, M. R., Tinto, N., Frisso, G., D’Argenio, V., Lombardo, B., Terracciano, D., Crescioli, C., & Scudiero, O. (2024). How Does Physical Activity Modulate Hormone Responses? Biomolecules, 14(11), 1418. https://doi.org/10.3390/biom14111418
Namboonlue, C., Hamlin, M. J., Sirasaporn, P., Manimmanakorn, N., Wonnabussapawich, P., Thuwakum, W., Sumethanurakkhakun, W., & Manimmanakorn, A. (2020). Optimal degree of hypoxia com-bined with low-load resistance training for muscle strength and thickness in athletes. Journal of Physical Education and Sport, 2020(02). https://doi.org/10.7752/jpes.2020.02119
Nitzsche, N., Schulze, R., Weigand, F., Hummer, N., & Schulz, H. (2018). Comparison of an acute re-sistance training on the lactateconcentration with and without blood flow restriction at differ-ent loads. Deutsche Zeitschrift Für Sportmedizin, 2018(11), 337–343. https://doi.org/10.5960/dzsm.2018.351
Pearson, S. J., & Hussain, S. R. (2015). A Review on the Mechanisms of Blood-Flow Restriction Re-sistance Training-Induced Muscle Hypertrophy. Sports Medicine, 45(2), 187–200. https://doi.org/10.1007/s40279-014-0264-9
Radovanović, G., Bohm, S., Peper, K. K., Arampatzis, A., & Legerlotz, K. (2022). Evidence-Based High-Loading Tendon Exercise for 12 Weeks Leads to Increased Tendon Stiffness and Cross-Sectional Area in Achilles Tendinopathy: A Controlled Clinical Trial. Sports Medicine - Open, 8(1), 149. https://doi.org/10.1186/s40798-022-00545-5
Ramadhan, N. A., Tinduh, D., Nugraheni, N., Subadi, I., Narasinta, I., & Melaniani, S. (2025). Vascular En-dhothelial Growth Factor levels in medium-intensity versus low-intensity exercise with blood flow restriction in elderly women. Retos, 64, 254–262. https://doi.org/10.47197/retos.v64.110307
Schoenfeld, B. J., Grgic, J., Van Every, D. W., & Plotkin, D. L. (2021). Loading Recommendations for Mus-cle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continu-um. Sports, 9(2), 32. https://doi.org/10.3390/sports9020032
Thuwakum, W., Hamlin, M. J., Manimmanakorn, N., Leelayuwat, N., Wonnabussapawich, P., Boobpa-chat, D., & Mannimmanakorn, A. (2017). Low-load resistance training with hypoxia mimics tra-ditional strength training in team sport athletes. Journal of Physical Education and Sport, 17(01). https://doi.org/10.7752/jpes.2017.01036
Törpel, A., Peter, B., & Schega, L. (2020). Effect of Resistance Training Under Normobaric Hypoxia on Physical Performance, Hematological Parameters, and Body Composition in Young and Older People. Frontiers in Physiology, 11, 335. https://doi.org/10.3389/fphys.2020.00335
Van Doorslaer De Ten Ryen, S., Warnier, G., Gnimassou, O., Belhaj, M. R., Benoit, N., Naslain, D., Brook, M. S., Smith, K., Wilkinson, D. J., Nielens, H., Atherton, P. J., Francaux, M., & Deldicque, L. (2021). Higher strength gain after hypoxic vs normoxic resistance training despite no changes in muscle thickness and fractional protein synthetic rate. The FASEB Journal, 35(8), e21773. https://doi.org/10.1096/fj.202100654RR
Wideman, L., Weltman, J. Y., Hartman, M. L., Veldhuis, J. D., & Weltman, A. (2002). Growth Hormone Release During Acute and Chronic Aerobic and Resistance Exercise: Recent Findings. Sports Medicine, 32(15), 987–1004. https://doi.org/10.2165/00007256-200232150-00003
Yan, B., Lai, X., Yi, L., Wang, Y., & Hu, Y. (2016). Effects of Five-Week Resistance Training in Hypoxia on Hormones and Muscle Strength. Journal of Strength and Conditioning Research, 30(1), 184–193. https://doi.org/10.1519/JSC.0000000000001056
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Kittamook La-bantao, Apiwan Manimmanakorn; Michael John Hamlin; Nuttaset Manimmanakorn, Qinshan Huang, Chaiyawat Namboonlue, Chiraphorn Khaengkhan, Peeraporn Nithisup

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess