Efectos del entrenamiento a corto plazo sobre la aptitud aeróbica y anaeróbica en jugadores de fútbol universitario

Autores/as

DOI:

https://doi.org/10.47197/retos.v73.117428

Palabras clave:

Entrenamiento en circuito, entrenamiento intermitente, lactato en sangre, aeróbico, anaeróbico

Resumen

Objetivo: Este estudio investiga la eficacia de cuatro semanas de entrenamiento intermitente de sprints (INT) y entrenamiento en circuito (CT) sobre el rendimiento aeróbico y anaeróbico en jugadores de fútbol universitario.

Metodología: Los participantes fueron asignados aleatoriamente y de manera equitativa a uno de los dos grupos de entrenamiento (INT o CT). Ambos grupos completaron el régimen estándar de entrenamiento de fútbol, complementado con sus respectivos programas de entrenamiento durante las cuatro semanas. El consumo máximo de oxígeno (VO₂max), la capacidad anaeróbica (CA) y la potencia anaeróbica se evaluaron como indicadores principales del rendimiento aeróbico y anaeróbico, respectivamente. Además, se midieron las concentraciones de lactato en sangre a los 0 y 3 minutos tras una prueba de sprints repetidos.

Resultados: Un ANOVA de medidas repetidas reveló mejoras significativas en VO₂max (p = 0.004) y en la CA (p = 0.009) después del periodo de entrenamiento de cuatro semanas, sin diferencias significativas entre las dos intervenciones. Cabe destacar que se observó un aumento significativo en la potencia anaeróbica mínima (Pmin) (p = 0.043), a pesar de una mayor acumulación de lactato en comparación con los niveles previos al entrenamiento, lo que sugiere una mayor capacidad para mantener la velocidad bajo condiciones de fatiga muscular.

Conclusión: Estos hallazgos indican que ambos métodos de entrenamiento son eficaces para mejorar el rendimiento aeróbico y anaeróbico en jugadores de fútbol universitario. Sin embargo, los mecanismos fisiológicos subyacentes que explican las respuestas y adaptaciones a estas modalidades de entrenamiento requieren una investigación más profunda.

Referencias

Aguiar, M., Abrantes, C., Vitor, M., Leite, N., Sampaio, J., & Ibáñez, S. (2008). Effects of intermittent or continuous training on speed, jump and repeated-sprint ability in semi-professional soccer players. Open Sports Sci J, 1, 15-19. https://doi.org/10.2174/1875399X00801010015

American College of Sports Medicine. (2013). ACSM's guidelines for exercise testing and prescription. Lippincott williams & wilkins.

Andrade, V., Zagatto, A., Kalva-Filho, C., Mendes, O., Gobatto, C., Campos, E., & Papoti, M. (2015). Running-based anaerobic sprint test as a procedure to evaluate anaerobic power. Int J Sports Med, 36(14), 1156-1162. https://doi.org/10.1055/s-0035-1555935

Bangsbo, J. (2014). Physiological demands of football. Gatorade Sports Science Institute (GSSI). https://www.gssiweb.org/sports-science-exchange/article/sse-125-physiological-demands-of-football

Bayati, M., Farzad, B., Gharakhanlou, R., & Agha-Alinejad, H. (2011). A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble 'all-out' sprint interval training. J Sports Sci Med, 10(3), 571-576.

Benítez-Flores, S., de Sousa, A. F. M., da Cunha Totó, E. C., Santos Rosa, T., Del Rosso, S., Foster, C., & Boullosa, D. (2018). Shorter sprints elicit greater cardiorespiratory and mechanical responses with less fatigue during time-matched sprint interval training (SIT) sessions. Kinesiology, 50(2), 137-148. https://doi.org/10.26582/k.50.2.13

Bishop, D., Edge, J., & Goodman, C. (2004). Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. Eur J Appl Physiol, 92(4-5), 540-547. https://doi.org/10.1007/s00421-004-1150-1

Bogdanis, G. C., Nevill, M. E., Boobis, L. H., & Lakomy, H. K. (1996). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol (1985), 80(3), 876-884. https://doi.org/10.1152/jappl.1996.80.3.876

Boullosa, D., Dragutinovic, B., Feuerbacher, J. F., Benítez‐Flores, S., Coyle, E. F., & Schumann, M. (2022). Effects of short sprint interval training on aerobic and anaerobic indices: A systematic review and meta‐analysis. Scand J Med Sci Sports 32(5), 810-820. https://doi.org/10.1111/sms.14133

Carey, D. G., & Richardson, M. T. (2003). Can aerobic and anaerobic power be measured in a 60-second maximal test? J Sports Sci Med, 2(4), 151-157.

Cavar, M., Marsic, T., Corluka, M., Culjak, Z., Cerkez Zovko, I., Müller, A., Tschakert, G., & Hofmann, P. (2019). Effects of 6 weeks of different high-intensity interval and moderate continuous training on aerobic and anaerobic performance. J Strength Cond Res, 33(1), 44-56. https://doi.org/10.1519/jsc.0000000000002798

Dupont, G., Akakpo, K., & Berthoin, S. (2004). The effect of in-season, high-intensity interval training in soccer players. J Strength Cond Res, 18(3), 584-589. https://doi.org/10.1519/1533-4287(2004)18<584:Teoihi>2.0.Co;2

Edge, J., Hill-Haas, S., Goodman, C., & Bishop, D. (2006). Effects of resistance training on H+ regulation, buffer capacity, and repeated sprints. Med Sci Sports Exerc, 38(11), 2004-2011. https://doi.org/10.1249/01.mss.0000233793.31659.a3

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods, 39(2), 175-191. https://doi.org/10.3758/bf03193146

Fernandes-da-Silva, J., Castagna, C., Teixeira, A. S., Carminatti, L. J., & Guglielmo, L. G. (2016). The peak velocity derived from the Carminatti Test is related to physical match performance in young soccer players. J Sports Sci, 34(24), 2238-2245. https://doi.org/10.1080/02640414.2016.1209307

Forbes, S. C., Slade, J. M., & Meyer, R. A. (2008). Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans. Appl Physiol Nutr Metab, 33(6), 1124-1131. https://doi.org/10.1139/h08-099

Gaitanos, G. C., Williams, C., Boobis, L. H., & Brooks, S. (1993). Human muscle metabolism during intermittent maximal exercise. J Appl Physiol (1985), 75(2), 712-719. https://doi.org/10.1152/jappl.1993.75.2.712

Gastin, P. B., Meyer, D., Huntsman, E., & Cook, J. (2015). Increase in injury risk with low body mass and aerobic-running fitness in elite Australian football. Int J Sports Physiol Perform, 10(4), 458-463. https://doi.org/10.1123/ijspp.2014-0257

Harris, E., Rakobowchuk, M., & Birch, K. M. (2014). Sprint interval and sprint continuous training increases circulating CD34+ cells and cardio-respiratory fitness in young healthy women. PLoS One, 9(9), e108720. https://doi.org/10.1371/journal.pone.0108720

Hazell, T. J., Macpherson, R. E., Gravelle, B. M., & Lemon, P. W. (2010). 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol, 110(1), 153-160. https://doi.org/10.1007/s00421-010-1474-y

Hellsten-Westing, Y., Balsom, P. D., Norman, B., & Sjödin, B. (1993). The effect of high-intensity training on purine metabolism in man. Acta Physiol Scand, 149(4), 405-412. https://doi.org/10.1111/j.1748-1716.1993.tb09636.x

Hostrup, M., & Bangsbo, J. (2017). Limitations in intense exercise performance of athletes - effect of speed endurance training on ion handling and fatigue development. J Physiol, 595(9), 2897-2913. https://doi.org/10.1113/JP273218

Iaia, F. M., Thomassen, M., Kolding, H., Gunnarsson, T., Wendell, J., Rostgaard, T., Nordsborg, N., Krustrup, P., Nybo, L., Hellsten, Y., & Bangsbo, J. (2008). Reduced volume but increased training intensity elevates muscle Na+-K+ pump alpha1-subunit and NHE1 expression as well as short-term work capacity in humans. Am J Physiol Regul Integr Comp Physiol, 294(3), R966-974. https://doi.org/10.1152/ajpregu.00666.2007

Ijichi, T., Hasegawa, Y., Morishima, T., Kurihara, T., Hamaoka, T., & Goto, K. (2015). Effect of sprint training: training once daily versus twice every second day. Eur J Sport Sci, 15(2), 143-150. https://doi.org/10.1080/17461391.2014.932849

Islam, H., Townsend, L. K., Dunn, E., Eys, M., Robertson-Wilson, J., & Hazell, T. J. (2017). Modified sprint interval training protocols. Part II. Psychological responses. Appl Physiol Nutr Metab, 42(4), 347-353. https://doi.org/10.1139/apnm-2016-0479

Joseph, J., Woods, C., & Joyce, C. (2020). Relationship between repeated kicking performance and maximal aerobic capacity in elite junior Australian football. J Strength Cond Res, 34(8), 2294-2301. https://doi.org/10.1519/jsc.0000000000002220

Karahan, M. (2020). Effect of skill-based training vs. small-sided games on physical performance improvement in young soccer players. Biol Sport, 37(3), 305-312. https://doi.org/10.5114/biolsport.2020.96319

Klika, B., & Jordan, C. (2013). High-intensity circuit training using body weight: Maximum results with minimal investment. ACSMs Health Fit J, 17(3), 8-13. https://doi.org/10.1249/FIT.0b013e31828cb1e8

Léger, L. A., Mercier, D., Gadoury, C., & Lambert, J. (1988). The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci, 6(2), 93-101. https://doi.org/10.1080/02640418808729800

Little, J. P., Safdar, A., Wilkin, G. P., Tarnopolsky, M. A., & Gibala, M. J. (2010). A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol, 588(6), 1011-1022. https://doi.org/10.1113/jphysiol.2009.181743

Mathur, C. (2022). Effect of circuit training on agility and anaerobic power among college-level football players. Bull Env Pharmacol Life Sci, 11(6), 132-137.

McKenna, M. J., Bangsbo, J., & Renaud, J. M. (2008). Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Physiol (1985), 104(1), 288-295. https://doi.org/10.1152/japplphysiol.01037.2007

Myers, T. R., Schneider, M. G., Schmale, M. S., & Hazell, T. J. (2015). Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females. J Strength Cond Res, 29(6), 1592-1600. https://doi.org/10.1519/jsc.0000000000000790

Nasuka, N., Santosa, I., Setiowati, A., & Indrawati, F. (2018). Anaerobic capacity and blood lactate level of former elite athletes. IOP Conf Ser Mater Sci Eng, 434(1), 012157. https://doi.org/10.1088/1757-899X/434/1/012157

Orendurff, M. S., Walker, J. D., Jovanovic, M., Tulchin, K. L., Levy, M., & Hoffmann, D. K. (2010). Intensity and duration of intermittent exercise and recovery during a soccer match. J Strength Cond Res, 24(10), 2683-2692. https://doi.org/10.1519/JSC.0b013e3181bac463

Ortiz, J. G., de Lucas, R. D., Teixeira, A. S., Mohr, P. A., & Guglielmo, L. G. A. (2024). The effects of a supramaximal intermittent training program on aerobic and anaerobic running measures in junior male soccer players. J Hum Kinet, 90, 253-267. https://doi.org/10.5114/jhk/170755

Parra, J., Cadefau, J. A., Rodas, G., Amigó, N., & Cussó, R. (2000). The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiol Scand, 169(2), 157-165. https://doi.org/10.1046/j.1365-201x.2000.00730.x

Rampinini, E., Bishop, D., Marcora, S. M., Ferrari Bravo, D., Sassi, R., & Impellizzeri, F. M. (2007). Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int J Sports Med, 28(3), 228-235. https://doi.org/10.1055/s-2006-924340

Rebelo, A., Brito, J., Seabra, A., Oliveira, J., & Krustrup, P. (2014). Physical match performance of youth football players in relation to physical capacity. Eur J Sport Sci, 14 Suppl 1, S148-156. https://doi.org/10.1080/17461391.2012.664171

Ross, A., Leveritt, M., & Riek, S. (2001). Neural influences on sprint running: training adaptations and acute responses. Sports Med, 31(6), 409-425. https://doi.org/10.2165/00007256-200131060-00002

Sahlin, K. (2014). Muscle energetics during explosive activities and potential effects of nutrition and training. Sports Med, 44 Suppl 2(Suppl 2), S167-173. https://doi.org/10.1007/s40279-014-0256-9

Sammoud, S., Bouguezzi, R., Negra, Y., & Chaabene, H. (2021). The Reliability and Sensitivity of Change of Direction Deficit and Its Association with Linear Sprint Speed in Prepubertal Male Soccer Players. J Funct Morphol Kinesiol, 6(2). https://doi.org/10.3390/jfmk6020041

Scalzo, R. L., Peltonen, G. L., Binns, S. E., Shankaran, M., Giordano, G. R., Hartley, D. A., Klochak, A. L., Lonac, M. C., Paris, H. L., Szallar, S. E., Wood, L. M., Peelor, F. F., 3rd, Holmes, W. E., Hellerstein, M. K., Bell, C., Hamilton, K. L., & Miller, B. F. (2014). Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J, 28(6), 2705-2714. https://doi.org/10.1096/fj.13-246595

Siahkouhian, M., Khodadadi, D., & Shahmoradi, K. (2013). Effects of high-intensity interval training on aerobic and anaerobic indices: Comparison of physically active and inactive men. Sci Sports, 28(5), e119-e125. https://doi.org/10.1016/j.scispo.2012.11.006

Skleryk, J. R., Karagounis, L. G., Hawley, J. A., Sharman, M. J., Laursen, P. B., & Watson, G. (2013). Two weeks of reduced-volume sprint interval or traditional exercise training does not improve metabolic functioning in sedentary obese men. Diabetes Obes Metab, 15(12), 1146-1153. https://doi.org/10.1111/dom.12150

Sonchan, W. (2017). The effects of a circuit training program on muscle strength agility anaerobic performance and cardiovascular endurance. Int J Sports Health Sci 11(4).

Stølen, T., Chamari, K., Castagna, C., & Wisløff, U. (2005). Physiology of soccer: an update. Sports Med, 35(6), 501-536. https://doi.org/10.2165/00007256-200535060-00004

Vollaard, N. B. J., Metcalfe, R. S., & Williams, S. (2017). Effect of number of sprints in an SIT session on change in V O2max: A meta-analysis. Med Sci Sports Exerc, 49(6), 1147-1156. https://doi.org/10.1249/MSS.0000000000001204

World Medical Association. (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. Jama, 310(20), 2191-2194. https://doi.org/10.1001/jama.2013.281053

Zagatto, A. M., Beck, W. R., & Gobatto, C. A. (2009). Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. J Strength Cond Res, 23(6), 1820-1827. https://doi.org/10.1519/JSC.0b013e3181b3df32

Zarrinkalam, E., ranjbar, k., & Davoudi, M. (2022). Comparing the effects of eight weeks of low-volume and high-volume High Intensity interval training on lactate response and some performance indicators of soccer players. New approaches Exerc Physiol (Online), 4(8), 128-141. https://doi.org/10.22054/nass.2023.72704.1127

Zelt, J. G., Hankinson, P. B., Foster, W. S., Williams, C. B., Reynolds, J., Garneys, E., Tschakovsky, M. E., & Gurd, B. J. (2014). Reducing the volume of sprint interval training does not diminish maximal and submaximal performance gains in healthy men. Eur J Appl Physiol, 114(11), 2427-2436. https://doi.org/10.1007/s00421-014-2960-4

Descargas

Publicado

16-10-2025

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Cómo citar

Treeraj, A., Choodam, C., Condello, G., & Khemtong, C. (2025). Efectos del entrenamiento a corto plazo sobre la aptitud aeróbica y anaeróbica en jugadores de fútbol universitario. Retos, 73, 702-714. https://doi.org/10.47197/retos.v73.117428