El impacto del entrenamiento con conos en el tiempo de reacción y el rendimiento en la carrera de 30 metros en velocistas juveniles
DOI:
https://doi.org/10.47197/retos.v73.117910Palabras clave:
atletismo, prueba de 30 metros, componentes físicos, velocidad de reacción, modelo de entrenamientoResumen
Introducción: La velocidad de reacción y la velocidad máxima son dos componentes fundamentales que influyen en el rendimiento de los deportistas en el atletismo, especialmente en los 100 metros lisos. Sin embargo, hasta ahora no se han explorado al máximo modelos de entrenamiento eficaces para aumentar la velocidad de reacción y la velocidad máxima.
Objetivo: Este estudio tiene como objetivo demostrar el efecto del entrenamiento I of Pain 5 Cone Drill sobre la velocidad de reacción y la velocidad máxima en atletas de velocidad de 100 metros.
Metodología: En este estudio participaron un total de 16 atletas jóvenes velocistas de entre 15 y 17 años de edad que recibieron una intervención de entrenamiento con taladro de 5 conos I of Pain durante 6 semanas. La recopilación de datos se llevó a cabo midiendo la velocidad máxima mediante una prueba de sprint de 30 metros, mientras que la velocidad de reacción mediante la reacción audio y visual de todo el cuerpo se llevó a cabo antes y después de la intervención. Se aplicó la prueba t paramétrica de muestras pareadas para probar la diferencia de datos en cada grupo, mientras que se aplicó la prueba t de muestras independientes para probar la diferencia de datos entre grupos con un nivel significativo del 5%.
Resultados: Los resultados mostraron una mayor velocidad de reacción y en la prueba de sprint de 30 metros entre antes y después del ejercicio durante 6 semanas (p ≤ 0,001). Además, se observó un aumento en la velocidad de reacción y en la prueba de sprint de 30 metros entre los grupos (p ≤ 0,05).
Conclusiones: Estos hallazgos demuestran que el ejercicio I of Pain 5 Cone Drill tiene un impacto positivo en el aumento de la velocidad de reacción y la prueba de sprint de 30 metros, por lo que es uno de los métodos de entrenamiento que se deben considerar en la preparación e implementación del programa de entrenamiento del atleta de sprint de 100 metros.
Referencias
Bushnell, T., and Hunter, I (2007). Differences in technique between sprinters and distance runners at equal and maximal speeds. Sports biomechanics, 6(3), 261–268. https://doi.org/10.1080/14763140701489728.
Diputra, R. (2015). The effect of Three Cone Drill, Four Cone Drill, and Five Cone Drill exercises on agility and speed. SPORTIF Journal: Journal of Learning Research, 1(1), 41. https://doi.org/10.29407/js_unpgri.v1i1.574.
Ferro, A., Villacieros, J., Floría, P., and Graupera, J.L. (2014). Analysis of speed performance in soccer by a playing position and a sports level using a laser system. Journal of human kinetics, 44, 143–153. https://doi.org/10.2478/hukin-2014-0120.
Gavkare, A.M., Surdi, A.D., and Nanaware, N. (2013). Auditory Reaction Time, Visual Reaction Time and Whole Body Reaction Time in Athletes. Indian Medical Gazette, 147(6), 214-219.
Haugen, T., Seiler, S., Sandbakk, Ø., Tønnessen, E. (2019). The Training and Development of Elite Sprint Performance: an Integration of Scientific and Best Practice Literature. Sports medicine – open, 5(1), 44. https://doi.org/10.1186/s40798-019-0221-0.
Healy, R., Kenny, I.C., and Harrison, A.J. (2022). Profiling elite male 100-m sprint performance: The role of maximum velocity and relative acceleration. Journal of sport and health science, 11(1), 75–84. https://doi.org/10.1016/j.jshs.2019.10.002.
Lee, Y.S., Lee, D., and Ahn, N.Y. (2024). SAQ training on sprint, change-of-direction speed, and agility in U-20 female football players. PloS one, 19(3): e0299204. https://doi.org/10.1371/journal.pone.0299204.
Lichtenstein, E., Held, S., Rappelt, L., Zacher, J., Eibl, A., Ludyga, S., Faude, O., and Donath, L. (2023). Agility training to integratively promote neuromuscular, cardiorespiratory and cognitive function in healthy older adults: a one-year randomized-controlled trial. European review of aging and physical activity : official journal of the European Group for Research into Elderly and Physical Activity, 20(1), 21. https://doi.org/10.1186/s11556-023-00331-6.
Li, X., Qu, X., Shi, K., Yang, Y., and Sun, J. (2024). Physical exercise for brain plasticity promotion an overview of the underlying oscillatory mechanism. Frontiers in neuroscience, 18, 1440975. https://doi.org/10.3389/fnins.2024.1440975.
Maksum, A., and Indahwati, N. (2023). Personality traits, environment, and career stages of top athletes: An evidence from outstanding badminton players of Indonesia. Heliyon, 9(3): e13779. https://doi.org/10.1016/j.heliyon.2023.e13779.
McDermott, B.P., Anderson, S.A., Armstrong, L.E., Casa, D.J., Cheuvront, S.N., Cooper, L., Kenney, W.L., O'Connor, F.G., and Roberts, W.O. (2017). National Athletic Trainers' Association Position Statement: Fluid Replacement for the Physically Active. Journal of athletic training, 52(9), 877–895. https://doi.org/10.4085/1062-6050-52.9.02.
Mongold, S.J., Georgiev, C., Legrand, T., and Bourguignon, M. (2024). Afferents to Action: Cortical Proprioceptive Processing Assessed with Corticokinematic Coherence Specifically Relates to Gross Motor Skills. eNeuro, 11(1), ENEURO.0384-23.2023. https://doi.org/10.1523/ENEURO.0384-23.2023.
Morat, M., Faude, O., Hanssen, H., Ludyga, S., Zacher, J., Eibl, A., Albracht, K., and Donath, L. (2020). Agility Training to Integratively Promote Neuromuscular, Cognitive, Cardiovascular and Psychosocial Function in Healthy Older Adults: A Study Protocol of a One-Year Randomized-Controlled Trial. International journal of environmental research and public health, 17(6), 1853. https://doi.org/10.3390/ijerph17061853.
Morin, J.B., Slawinski, J., Dorel, S., de Villareal, E.S., Couturier, A., Samozino, P., Brughelli, M., and Rabita G. (2015). Acceleration capability in elite sprinters and ground impulse: Push more, brake less?. Journal of biomechanics, 48(12), 3149–3154. https://doi.org/10.1016/j.jbiomech.2015.07.009.
Nagahara, R., Matsubayashi, T., Matsuo, A., Zushi, K. (2014). Kinematics of transition during human accelerated sprinting. Biology open, 3(8), 689–699. https://doi.org/10.1242/bio.20148284.
Neviantoko, G.Y., Mintarto, E., and Wiriawan, O. (2020). The Effect of Five Cone Snake Drill, V-Drill And Lateral Two In The Hole, In Out Shuffle Exercises on Agility and Speed. Multilateral Journal of Physical Education and Sports, 19(2), 154. https://doi.org/10.20527/multilateral.v19i2.9039.
Plotkin, D.L., Roberts, M.D., Haun, C.T., and Schoenfeld, B.J. (2021). Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports (Basel, Switzerland), 9(9): 127. https://doi.org/10.3390/sports9090127.
Putera, S.H.P., Setijono, H., Wiriawan, O., Nurhasan., Muhammad, H.N., Hariyanto, A., Sholikhah, A.M., and Pranoto, A. (2023). Positive Effects of Plyometric Training on Increasing Speed, Strength and Limb Muscles Power in Adolescent Males. Physical Education Theory and Methodology, 23(1), 42–48. https://doi.org/10.17309/tmfv.2023.1.06.
Ross, A., Leveritt, M., and Riek, S. (2001). Neural influences on sprint running: training adaptations and acute responses. Sports medicine (Auckland, N.Z.), 31(6), 409–425. https://doi.org/10.2165/00007256-200131060-00002.
Shahrezaei, V., Cao, A., and Delaney, K.R. (2006). Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction. The Journal of neuroscience : the official journal of the Society for Neuroscience, 26(51), 13240–13249. https://doi.org/10.1523/JNEUROSCI.1418-06.2006.
Skelly, L.E., Gillen, J.B., Frankish, B.P., MacInnis, M.J., Godkin, F.E., Tarnopolsky, M.A., Murphy, R.M., Gibala, M.J. (2021). Human skeletal muscle fiber type-specific responses to sprint interval and moderate-intensity continuous exercise: Acute and training-induced changes. Journal of Applied Physiology, 130(4), 1001-1014. https://doi.org/JAPPL-00862-2020.
Sullivan, G.M., and Feinn, R. (2012). Using Effect Size-or Why the P Value Is Not Enough. Journal of graduate medical education, 4(3): 279–282. https://doi.org/10.4300/JGME-D-12-00156.1.
Suyoko, A., Alfan Triardhana, Y., Wahyu, T., Seputra, A., and Susilo, E.A. (2022). Monitoring the Physical Condition of Shorinji Kempo Athlete Sports. Bravo’s Jurnal Program Studi Pendidikan Jasmani dan Kesehatan, 10(4), 333. https://doi.org/10.32682/bravos.v10i4/2820.
Tam, C.K., and Yao, Z.F. (2024). Advancing 100m sprint performance prediction: A machine learning approach to velocity curve modeling and performance correlation. PloS one, 19(5), e0303366. https://doi.org/10.1371/journal.pone.0303366.
Tønnessen, E., Haugen, T., and Shalfawi, S.A. (2013). Reaction time aspects of elite sprinters in athletic world championships. Journal of strength and conditioning research, 27(4), 885–892. https://doi.org/10.1519/JSC.0b013e31826520c3.
Wang, P., Shi, C., Chen, J., Gao, X., Wang, Z., Fan, Y., and Mao, Y. (2024). Training methods and evaluation of basketball players' agility quality: A systematic review. Heliyon, 10(1), e24296. https://doi.org/10.1016/j.heliyon.2024.e24296.
Wu, Y., Xu, Z., Liang, S., Wang, L., Wang, M., Jia, H., Chen, X., Zhao, Z., and Liao, X. (2024). NeuroSeg-III: efficient neuron segmentation in two-photon Ca2+ imaging data using self-supervised learning. Biomedical optics express, 15(5), 2910–2925. https://doi.org/10.1364/BOE.521478.
Yeom, H.G., Kim, J.S., and Chung, C.K. (2020). Brain mechanisms in motor control during reaching movements: Transition of functional connectivity according to movement states. Scientific Reports, 10(1), 567. https://doi.org/10.1038/s41598-020-57489-7.
Yılmaz, O., Soylu, Y., Erkmen, N., Kaplan, T., and Batalik, L. (2024). Effects of proprioceptive training on sports performance: a systematic review. BMC sports science, medicine & rehabilitation, 6(1), 149. https://doi.org/10.1186/s13102-024-00936-z.
Zhou, J. (2021). Ca2+-mediated coupling between neuromuscular junction and mitochondria in skeletal muscle. Neuroscience letters, 754, 135899. https://doi.org/10.1016/j.neulet.2021.135899.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Andri Suyoko, Adi Pranoto, Rudi Mas Bagus, Fansah Adila, Dony Andrijanto, Junaidi Budi Prihanto, Nur Salsabila Rhesa Pandhadha Putra, Pudjijuniarto Pudjijuniarto, Hijrin Fithroni, Bekir Erhan Orhan

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess