Ocho semanas de actividad física aumentan significativamente los niveles de BDNF en estudiantes de secundaria en Indonesia: un ensayo controlado aleatorizado

Autores/as

DOI:

https://doi.org/10.47197/retos.v73.117944

Palabras clave:

Actividad física, Salud, Ejercicio físico, BDNF

Resumen

Antecedentes: Muchos factores influyen en la función cognitiva. Uno de ellos es el ejercicio regular. Estudios previos han demostrado que la actividad física aguda aumenta el BDNF, un biomarcador de la función cognitiva. Sin embargo, el ejercicio crónico no se ha estudiado ampliamente.

Objetivo: Este estudio tiene como objetivo determinar el efecto de ocho semanas de actividad física en el aumento de los niveles de BDNF en estudiantes de secundaria en Indonesia.

Métodos: En este estudio participaron 50 mujeres sanas, divididas en dos grupos: un grupo experimental (GE) (n=25) y un grupo control (GC) (n=25). Las participantes tenían entre 17 y 20 años y fueron seleccionadas mediante muestreo aleatorio. Todas ellas firmaron el consentimiento informado proporcionado por la investigadora. Tras la selección, se formaron los dos grupos: el grupo experimental (GE) realizó actividad física tres veces por semana durante ocho semanas, mientras que el grupo control (GC) no recibió ninguna intervención de actividad física. El estudio se llevó a cabo durante ocho semanas, comenzando con la recopilación de información sobre las características de las participantes. Posteriormente, se instruyó a los participantes para que realizaran actividades físicas guiadas por profesores de educación física. El entrenamiento consistió en juegos deportivos como voleibol, baloncesto y fútbol. Antes del primer día de entrenamiento, se extrajo sangre como dato pretest, y tras ocho semanas de tratamiento, se extrajo sangre nuevamente como dato postest.

Resultados: Los resultados del estudio mostraron que ocho semanas de actividad física aumentaron significativamente los niveles de BDNF en mujeres sanas (p < 0,05*).

Conclusión: Por lo tanto, se puede concluir que la actividad física crónica puede tener un impacto significativo en la función cognitiva a través de los niveles de BDNF. En consecuencia, se recomienda el ejercicio físico regular para prevenir el deterioro cognitivo.

Referencias

Cho, H. C., Kim, J., Kim, S., Son, Y. H., Lee, N., & Jung, S. H. (2012). The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO 2max performance in healthy college men. Neuroscience Letters, 519(1), 78–83. https://doi.org/10.1016/j.neulet.2012.05.025

Cho, S. Y., So, W. Y., & Roh, H. T. (2017). The effects of taekwondo training on peripheral Neuroplasticity-Related growth factors, cerebral blood flow velocity, and cognitive functions in healthy children: A randomized controlled trial. International Journal of Environmental Research and Public Health, 14(5), 1–10. https://doi.org/10.3390/ijerph14050454

Dany, D., Arianti, D., Rossa, M., Aji Prayitno, D., Erfarenata, F., & Cahyanto Wibawa, J. (2025). Physiological responses of resistance training in increasing brain-derived neurotrophic factor levels: a systematic review. Retos, 68, 1250–1261. https://doi.org/10.47197/retos.v68.115912

Devenney, K. E., Guinan, E. M., Kelly, Á. M., Mota, B. C., Walsh, C., Olde Rikkert, M., Schneider, S., & Lawlor, B. (2019). Acute high-intensity aerobic exercise affects brain-derived neurotrophic factor in mild cognitive impairment: A randomised controlled study. BMJ Open Sport and Exercise Medicine, 5(1), 1–8. https://doi.org/10.1136/bmjsem-2018-000499

Ding, Q., Vaynman, S., Akhavan, M., Ying, Z., & Gomez-Pinilla, F. (2006). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience, 140(3), 823–833. https://doi.org/10.1016/j.neuroscience.2006.02.084

El Hayek, L., Khalifeh, M., Zibara, V., Abi Assaad, R., Emmanuel, N., Karnib, N., El-Ghandour, R., Nasrallah, P., Bilen, M., Ibrahim, P., Younes, J., Abou Haidar, E., Barmo, N., Jabre, V., Stephan, J. S., & Sleiman, S. F. (2019). 17. El lactato media los efectos del ejercicio sobre el aprendizaje y la memoria através de la activación dependiente de SIRT1 del factor neurotrófico derivado delcerebro (BDNF) del hipocampo. — Lactate mediates the effects of exercise on learning and. Journal of Neuroscience, 39(13), 2369–2382.

Erickson, K. I., Miller, D. L., & Roecklein, K. A. (2012). The aging hippocampus: Interactions between exercise, depression, and BDNF. Neuroscientist, 18(1), 82–97. https://doi.org/10.1177/1073858410397054

Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3017–3022. https://doi.org/10.1073/pnas.1015950108

Farmer, J., Zhao, X., Van Praag, H., Wodtke, K., Gage, F. H., & Christie, B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male sprague-dawley rats in vivo. Neuroscience, 124(1), 71–79. https://doi.org/10.1016/j.neuroscience.2003.09.029

Gale, S. A., Acar, D., & Daffner, K. R. (2018). Dementia. American Journal of Medicine, 131(10), 1161–1169. https://doi.org/10.1016/j.amjmed.2018.01.022

Gogniat, M. A., Robinson, T. L., Jean, K. R., & Stephen Miller, L. (2022). Physical activity moderates the association between executive function and functional connectivity in older adults. Aging Brain, 2, 100036. https://doi.org/10.1016/j.nbas.2022.100036

Griffin, É. W., Mullally, S., Foley, C., Warmington, S. A., O’Mara, S. M., & Kelly, Á. M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology and Behavior, 104(5), 934–941. https://doi.org/10.1016/j.physbeh.2011.06.005

Haapasalo, A., Sipola, I., Larsson, K., Åkerman, K. E. O., Stoilov, P., Stamm, S., Wong, G., & Castrén, E. (2002). Regulation of TRKB surface expression by brain-derived neurotrophic factor and truncated TRKB isoforms. Journal of Biological Chemistry, 277(45), 43160–43167. https://doi.org/10.1074/jbc.M205202200

Hötting, K., Schickert, N., Kaiser, J., Röder, B., & Schmidt-Kassow, M. (2016). The effects of acute physical exercise on memory, peripheral BDNF, and cortisol in young adults. Neural Plasticity, 2016. https://doi.org/10.1155/2016/6860573

Iso-Markku, P., Kujala, U. M., Knittle, K., Polet, J., Vuoksimaa, E., & Waller, K. (2022). Physical activity as a protective factor for dementia and Alzheimer’s disease: systematic review, meta-analysis and quality assessment of cohort and case-control studies. British Journal of Sports Medicine, 56(12), 701–709. https://doi.org/10.1136/bjsports-2021-104981

Jeon, Y. K., & Ha, C. H. (2017). The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environmental Health and Preventive Medicine, 22(1), 1–6. https://doi.org/10.1186/s12199-017-0643-6

Jiang, N., Lv, J., Zhang, Y., Sun, X., Yao, C., Wang, Q., He, Q., & Liu, X. (2023). Protective effects of ginsenosides Rg1 and Rb1 against cognitive impairment induced by simulated microgravity in rats. Frontiers in Pharmacology, 14(April), 1–11. https://doi.org/10.3389/fphar.2023.1167398

Lammers, M. D., Aneli, N. M., de Oliveira, G. G., de Oliveira Maciel, S. F. V., Zanini, D., Manica, A., de Resende e Silva, D. T., Bagatini, M. D., Sevigny, J., De Sa, C. A., Manfredi, L. H., & Cardoso, A. M. (2020). The anti-inflammatory effect of resistance training in hypertensive women: The role of purinergic signaling. Journal of Hypertension, 38(12), 2490–2500. https://doi.org/10.1097/HJH.0000000000002578

Lima Giacobbo, B., Doorduin, J., Klein, H. C., Dierckx, R. A. J. O., Bromberg, E., & de Vries, E. F. J. (2019). Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Molecular Neurobiology, 56(5), 3295–3312. https://doi.org/10.1007/s12035-018-1283-6

Lippi, G., Mattiuzzi, C., & Sanchis-Gomar, F. (2020). Updated overview on interplay between physical exercise, neurotrophins, and cognitive function in humans. Journal of Sport and Health Science, 9(1), 74–81. https://doi.org/10.1016/j.jshs.2019.07.012

Long, S., Benoist, C., & Weidner, W. (2023). World Alzheimer Report 2023. 94.

Lukkahatai, N., Ong, I. L., Benjasirisan, C., & Saligan, L. N. (2025). Brain-Derived Neurotrophic Factor (BDNF) as a Marker of Physical Exercise or Activity Effectiveness in Fatigue, Pain, Depression, and Sleep Disturbances: A Scoping Review. Biomedicines, 13(2), 1–21. https://doi.org/10.3390/biomedicines13020332

Miranda, M., Morici, J. F., Zanoni, M. B., & Bekinschtein, P. (2019). Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Frontiers in Cellular Neuroscience, 13(August), 1–25. https://doi.org/10.3389/fncel.2019.00363

Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K., Chalek, J., Abd-Allah, F., Abdoli, A., Abualhasan, A., Abu-Gharbieh, E., Akram, T. T., Al Hamad, H., Alahdab, F., Alanezi, F. M., Alipour, V., Almustanyir, S., Amu, H., Ansari, I., Arabloo, J., Ashraf, T., … Vos, T. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 7(2), e105–e125. https://doi.org/10.1016/S2468-2667(21)00249-8

Nichols, E., Szoeke, C. E. I., Vollset, S. E., Abbasi, N., Abd-Allah, F., Abdela, J., Aichour, M. T. E., Akinyemi, R. O., Alahdab, F., Asgedom, S. W., Awasthi, A., Barker-Collo, S. L., Baune, B. T., Béjot, Y., Belachew, A. B., Bennett, D. A., Biadgo, B., Bijani, A., Bin Sayeed, M. S., … Murray, C. J. L. (2019). Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 88–106. https://doi.org/10.1016/S1474-4422(18)30403-4

Pickett, J., & Brayne, C. (2019). The scale and profile of global dementia research funding. The Lancet, 394(10212), 1888–1889. https://doi.org/10.1016/S0140-6736(19)32599-1

Piepmeier, A. T., Etnier, J. L., Wideman, L., Berry, N. T., Kincaid, Z., & Weaver, M. A. (2020). A preliminary investigation of acute exercise intensity on memory and BDNF isoform concentrations. European Journal of Sport Science, 20(6), 819–830. https://doi.org/10.1080/17461391.2019.1660726

Pollán, M., Casla-Barrio, S., Alfaro, J., Esteban, C., Segui-Palmer, M. A., Lucia, A., & Martín, M. (2020). Exercise and cancer: a position statement from the Spanish Society of Medical Oncology. Clinical and Translational Oncology, 22(10), 1710–1729. https://doi.org/10.1007/s12094-020-02312-y

Putra, D. P., Wibawa, J. C., & Putro, B. N. (2025). Physical exercise as a key to activating fat burning through the activation of uncoupling protein 1 (ucp1) in adipose tissue: a scoping review. Retos, 67, 1061–1075. https://doi.org/10.47197/retos.v67.111997

Reycraft, J. T., Islam, H., Townsend, L. K., Hayward, G. C., Hazell, T. O. M. J., & MacPherson, R. E. K. (2020). Exercise Intensity and Recovery on Circulating Brain-derived Neurotrophic Factor. Medicine and Science in Sports and Exercise, 52(5), 1210–1217. https://doi.org/10.1249/MSS.0000000000002242

Ribeiro, D., Petrigna, L., Pereira, F. C., Muscella, A., Bianco, A., & Tavares, P. (2021). The impact of physical exercise on the circulating levels of BDNF and NT 4/5: A review. International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/ijms22168814

Roig, M., Nordbrandt, S., Geertsen, S. S., & Nielsen, J. B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience and Biobehavioral Reviews, 37(8), 1645–1666. https://doi.org/10.1016/j.neubiorev.2013.06.012

Romero Garavito, A., Díaz Martínez, V., Juárez Cortés, E., Negrete Díaz, J. V., & Montilla Rodríguez, L. M. (2024). Impact of physical exercise on the regulation of brain-derived neurotrophic factor in people with neurodegenerative diseases. Frontiers in Neurology, 15(January), 1–16. https://doi.org/10.3389/fneur.2024.1505879

Sáenz Jiménez, C. (2021). Beneficios del Ejercicio Físico sobre la Neuroplasticidad y la Cognición. NeuroRehabNews, 2(Octubre), 1–2. https://doi.org/10.37382/nrn.octubre.2017.524

Sleiman, S. F., & Chao, M. V. (2015). Downstream Consequences of Exercise Through the Action of BDNF. Brain Plasticity, 1(1), 143–148. https://doi.org/10.3233/bpl-150017

Tsai, S. J. (2018). Critical issues in BDNF Val66met genetic studies of neuropsychiatric disorders. Frontiers in Molecular Neuroscience, 11(May), 1–15. https://doi.org/10.3389/fnmol.2018.00156

Tyler, W. J., & Pozzo-Miller, L. D. (2001). BDNF Enhances Quantal Neurotransmitter Release and Increases the Number of Docked Vesicles at the Active Zones of Hippocampal Excitatory Synapses, The journal of Neuroscience, 21, 4249-4258, doi: 10.1523/JNEUROSCI.21-12-04249.2001. 21(12), 4249–4258.

Ventriglia, M., Zanardini, R., Bonomini, C., Zanetti, O., Volpe, D., Pasqualetti, P., Gennarelli, M., & Bocchio-Chiavetto, L. (2013). Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed Research International, 2013. https://doi.org/10.1155/2013/901082

Vivar, C., Peterson, B. D., & van Praag, H. (2016). Running rewires the neuronal network of adult-born dentate granule cells. NeuroImage, 131, 29–41. https://doi.org/10.1016/j.neuroimage.2015.11.031

Wan, J., Ma, L., Jiao, X., Dong, W., Lin, J., Qiu, Y., Wu, W., Liu, Q., Chen, C., Huang, H., Li, S., Zheng, H., & Wu, Y. (2024). Impaired synaptic plasticity and decreased excitability of hippocampal glutamatergic neurons mediated by BDNF downregulation contribute to cognitive dysfunction in mice induced by repeated neonatal exposure to ketamine. CNS Neuroscience and Therapeutics, 30(2), 1–18. https://doi.org/10.1111/cns.14604

Wang, W. H., He, G. P., Xiao, X. P., Gu, C., & Chen, H. Y. (2012). Relationship between brain-derived neurotrophic factor and cognitive function of obstructive sleep apnea/hypopnea syndrome patients. Asian Pacific Journal of Tropical Medicine, 5(11), 906–910. https://doi.org/10.1016/S1995-7645(12)60169-2

Weaver, S. R., Skinner, B. D., Furlong, R., Lucas, R. A. I., Cable, N. T., Rendeiro, C., McGettrick, H. M., & Lucas, S. J. E. (2021). Cerebral Hemodynamic and Neurotrophic Factor Responses Are Dependent on the Type of Exercise. Frontiers in Physiology, 11(January), 1–14. https://doi.org/10.3389/fphys.2020.609935

Won, J., Callow, D. D., Pena, G. S., Gogniat, M. A., Kommula, Y., Arnold-Nedimala, N. A., Jordan, L. S., & Smith, J. C. (2021). Evidence for exercise-related plasticity in functional and structural neural network connectivity. Neuroscience and Biobehavioral Reviews, 131(301), 923–940. https://doi.org/10.1016/j.neubiorev.2021.10.013

Xu, L., Zhu, L., Zhu, L., Chen, D., Cai, K., Liu, Z., & Chen, A. (2021). Moderate exercise combined with enriched environment enhances learning and memory through bdnf/trkb signaling pathway in rats. International Journal of Environmental Research and Public Health, 18(16). https://doi.org/10.3390/ijerph18168283

Zhao, T., Pan, P., Zhou, Y., Zhang, X., Li, Q., & Zhou, Y. (2025). Age-sex differences in Alzheimer’s and related dementias burden and risk factors in east and Southeast Asia: results from the 2021 GBD study. Frontiers in Aging Neuroscience, 17(June), 1–12. https://doi.org/10.3389/fnagi.2025.1562148

Descargas

Publicado

11-11-2025

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Cómo citar

Soleh Fudin, M., Febrianto, N., Budi Santosa, A., & Cahyanto Wibawa, J. (2025). Ocho semanas de actividad física aumentan significativamente los niveles de BDNF en estudiantes de secundaria en Indonesia: un ensayo controlado aleatorizado. Retos, 73, 1368-1378. https://doi.org/10.47197/retos.v73.117944