Equilibrio postural y rotación mental en gimnastas U-12: comparación con balonmanistas y video jugadores
DOI:
https://doi.org/10.47197/retos.v70.114116Palabras clave:
Equilibrio, control postural, rotación mental, gimnastas, balonmano, video jugadoresResumen
Introducción: La transición del equilibrio estático al dinámico puede influir en el rendimiento cognitivo, particularmente en tareas como la rotación mental.
Objetivo: Este estudio investiga el impacto de diferentes condiciones de equilibrio postural en las habilidades cognitivas visoespaciales, específicamente tareas de rotación mental que involucran cubos 3D rotados e imágenes del cuerpo humano, en gimnastas, balonmanistas y video jugadores menores de doce años.
Metodología: Cincuenta jóvenes voluntarios menores de doce años (12 gimnastas, 18 balonmanistas y 20 video jugadores) participaron en este estudio. El experimento incluyó tareas de rotación mental (cubos 3D y cuerpos humanos) bajo cuatro condiciones: sin equilibrio, equilibrio estático, equilibrio dinámico frontal y equilibrio dinámico sagital en una plataforma estabilométrica. l rendimiento cognitivo se evaluó mediante tiempo de respuesta y tasa de error, mientras el control postural se midió mediante oscilación, aceleración y desplazamiento del centro de presión (COP).
Resultados: Se observaron efectos beneficiosos inmediatos significativos del equilibrio dinámico en las tareas cognitivas. Las tareas duales mejoraron el rendimiento en control postural y rotación mental, con reducción del tiempo de respuesta y oscilación del COP (p<0,01).
Discusión: Los atletas mostraron mayores mejoras que los no atletas, destacando el efecto positivo del entrenamiento físico regular con control postural para potenciar habilidades cognitivas.
Conclusiones: Estos resultados sugieren que la práctica deportiva en la infancia mejora los sistemas sensorimotores, el control neuromuscular y el equilibrio, críticos para mantener la estabilidad y desarrollar habilidades cognitivas. Integrar entrenamiento de equilibrio y desafíos cognitivos en el entrenamiento físico podría optimizar tanto el rendimiento cognitivo como motor en jóvenes atletas.
Referencias
Amara, S., Al-Hadabi, B., El-Ashkar, H., Gmada, N., Habacha, H., & Mkaouer, B. (2024a). Does dynamic balance affect cube mental rotation task in badminton vs. volleyball female players? BMC psychology, 12(1), 131. https://doi.org/10.1186/s40359-024-01589-w
Amara, S., Al-Hadabi, B., El-Ashkar, H., Gmada, N., Habacha, H., & Mkaouer, B. (2024b). Effect of dyna-mic balance on human mental rotation task in female badminton vs. volleyball players. Fron-tiers in Psychology, 14, 1338265. https://doi.org/10.3389/fpsyg.2023.1338265
Andreeva, A., Melnikov, A., Skvortsov, D., Akhmerova, K., Vavaev, A., Golov, A., . . . Zemková, E. (2021). Postural stability in athletes: The role of sport direction. Gait & Posture, 89, 120-125. https://doi.org/10.1016/j.gaitpost.2021.07.005
Armitage, K. L., Bulley, A., & Redshaw, J. (2020). Developmental origins of cognitive offloading. Proc Biol Sci, 287(1928), 20192927. https://doi.org/10.1098/rspb.2019.2927
Beauchet, O., Dubost, V., Gonthier, R., & Kressig, R. W. (2005). Dual-Task-Related gait changes in. Ge-rontology, 51(1), 48-52. https://doi.org/10.1159/000081435
Bediou, B., Rodgers, M. A., Tipton, E., Mayer, R. E., Green, C. S., & Bavelier, D. (2023). Effects of action video game play on cognitive skills: A meta-analysis. Technology, Mind, and Behavior, 4(1), 1-21. https://doi.org/10.1037/tmb0000102
Bigelow, R. T., & Agrawal, Y. (2015). Vestibular involvement in cognition: Visuospatial ability, atten-tion, executive function, and memory. Journal of vestibular research, 25(2), 73-89. https://doi.org/10.3233/VES-150544
Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annu. Rev. Psychol., 58(1), 47-73. https://doi.org/0.1146/annurev.psych.57.102904.190152
Blüchel, M., Lehmann, J., Kellner, J., & Jansen, P. (2013). The improvement in mental rotation perfor-mance in primary school-aged children after a two-week motor-training. Educational Psycho-logy, 33(1), 75-86. https://doi.org/10.1080/01443410.2012.707612
Bott, H., Poltz, N., & Ehlert, A. (2023). Assessment of mental rotation performance at primary school age. A computer-based test procedure for first to third grades (cMR). Diagnostica, 69(3), 121-132. https://doi.org/10.1026/0012-1924/a000309
Broglio, S. P., Tomporowski, P. D., & Ferrara, M. S. (2005). Balance performance with a cognitive task: a dual-task testing paradigm. Medicine & Science in Sports & Exercise, 37(4), 689-695. https://doi.org/10.1249/01.MSS.0000159019.14919.09
Busquets, A., Ferrer-Uris, B., Angulo-Barroso, R., & Federolf, P. (2021). Gymnastics experience enhan-ces the development of bipedal-stance multi-segmental coordination and control during pro-prioceptive reweighting. Frontiers in Psychology, 12, 661312. https://doi.org/10.3389/fpsyg.2021.661312
Carlson, R. V., Boyd, K. M., & Webb, D. J. (2004). The revision of the Declaration of Helsinki: past, pre-sent and future. Br J Clin Pharmacol, 57(6), 695-713. https://doi.org/10.1111/j.1365-2125.2004.02103.x
Chen, J., Kwok, A. P. K., & Li, Y. (2023). Effective utilization of attentional resources in postural control in athletes of skill-oriented sports: an event-related potential study. Front Hum Neurosci, 17, 1219022. https://doi.org/10.3389/fnhum.2023.1219022
Cheung, O. S., Hayward, W. G., & Gauthier, I. (2009). Dissociating the effects of angular disparity and image similarity in mental rotation and object recognition. Cognition, 113(1), 128-133. https://doi.org/10.1016/j.cognition.2009.07.008
Cooper, L. A., & Shepard, R. N. (1973). Chronometric studies of the rotation of mental images. In W. G. Chase (Ed.), Visual Information Processing (pp. 75-176). Academic Press. https://doi.org/10.1016/B978-0-12-170150-5.50009-3
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child development, 71(1), 44-56. https://doi.org/10.1111/1467-8624.00117
Estes, D. (1998). Young children's awareness of their mental activity: The case of mental rotation. Child development, 69(5), 1345-1360. https://doi.org/10.1111/j.1467-8624.1998.tb06216.x
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research met-hods, 39(2), 175-191. https://doi.org/10.3758/BF03193146
Feng, T., Li, Y., Ji, Z., & Zhang, Z. (2019). The Role of Time Constraints in Athletes' Egocentric Mental Rotation Performance. Advances in cognitive Psychology, 15(3), 225-235. https://doi.org/10.5709/acp-0270-6
Feng, T., Zhang, Z., Ji, Z., Jia, B., & Li, Y. (2017). Selective Effects of Sport Expertise on the Stages of Mental Rotation Tasks With Object-Based and Egocentric Transformations. Adv Cogn Psychol, 13(3), 248-256. https://doi.org/10.5709/acp-0225-x
Geisen, M., Raab, M., Jansen, P., & Klatt, S. (2024). Embodied mental rotation ability in open-and clo-sed-skill sports: pilot study with a new virtual paradigm. Experimental brain research, 242(3), 653-664. https://doi.org/10.1007/s00221-023-06753-z
Habacha, H., Mallek, M., Moreau, D., Khalfallah, S., & Mkaouer, B. (2022). Differences in Mental Rota-tion Strategies Depend on the Level of Motor Expertise. The American Journal of Psychology, 135(3), 325-336. https://doi.org/10.5406/19398298.135.3.06
Habacha, H., Molinaro, C., Tabben, M., & Lejeune-Poutrain, L. (2014). Implementation of specific motor expertise during a mental rotation task of hands. Experimental brain research, 232(3), 3465-3473. https://doi.org/10.1007/s00221-014-4029-3
Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121-169). Cambridge University Press.
Heilmann, F., Weinberg, H., & Wollny, R. (2022). The impact of practicing open-vs. closed-skill sports on executive functions—A meta-analytic and systematic review with a focus on characteristics of sports. Brain Sciences, 12(8), 1071. https://doi.org/10.3390/brainsci12081071
Heppe, H., Kohler, A., Fleddermann, M.-T., & Zentgraf, K. (2016). The Relationship between Expertise in Sports, Visuospatial, and Basic Cognitive Skills. Frontiers in Psychology, 7, 904. https://doi.org/10.3389/fpsyg.2016.00904
Hofmann, P., Jost, L., & Jansen, P. (2023). Embodied mental rotation–does it affect postural stability? Journal of motor behavior, 55(2), 202-219. https://doi.org/10.1080/00222895.2022.2151970
Hofmann, P., Siebertz, M., & Jansen, P. (2024). No role of working memory in the relation between mental rotation and postural stability. Frontiers in Cognition, 2, 1298371. https://doi.org/10.3389/fcogn.2023.1298371
Hopkins, W. G. (2002). A scale of magnitudes for effect statistics. In W. G. Hopkins (Ed.), A new view of statistics (pp. 411). Sportscience. www.sportsci.org/resource/stats/effectmag.html.
Huxhold, O., Li, S.-C., Schmiedek, F., & Lindenberger, U. (2006). Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention. Brain Research Bu-lletin, 69(3), 294-305. https://doi.org/10.1016/j.brainresbull.2006.01.002
Jansen, P., & Kellner, J. (2015). The role of rotational hand movements and general motor ability in children’s mental rotation performance. Frontiers in Psychology, 6, 984. https://doi.org/10.3389/fpsyg.2015.00984
Jansen, P., Lange, L., & Heil, M. (2011). The influence of juggling on mental rotation performance in children. Biomedical Human Kinetics, 3, 18-22. https://doi.org/10.2478/v10101-011-0005-6
Jansen, P., & Lehmann, J. (2013). Mental rotation performance in soccer players and gymnasts in an object-based mental rotation task. Advances in cognitive Psychology, 9(2), 92-98. https://doi.org/10.2478/v10053-008-0135-8
Jansen, P., Lehmann, J., & Van Doren, J. (2012). Mental rotation performance in male soccer players. PloS one, 7(10), e48620. https://doi.org/10.1371/journal.pone.0048620
Jansen, P., Render, A., Scheer, C., & Siebertz, M. (2020). Mental rotation with abstract and embodied objects as stimuli: evidence from event-related potential (ERP). Exp Brain Res, 238(3), 525-535. https://doi.org/10.1007/s00221-020-05734-w
Jola, C., & Mast, F. W. (2005). Mental Object Rotation and Egocentric Body Transformation: Two Disso-ciable Processes? Spatial Cognition & Computation, 5(2-3), 217-237. https://doi.org/10.1080/13875868.2005.9683804
Jordan, K., Heinze, H.-J., Lutz, K., Kanowski, M., & Jäncke, L. (2001). Cortical activations during the mental rotation of different visual objects. Neuroimage, 13(1), 143-152. https://doi.org/10.1006/nimg.2000.0677
Jost, L., & Jansen, P. (2022). Manual training of mental rotation performance: Visual representation of rotating figures is the main driver for improvements. Q J Exp Psychol (Hove), 75(4), 695-711. https://doi.org/10.1177/17470218211039494
Jost, L., & Jansen, P. (2024). The influence of the design of mental rotation trials on performance and possible differences between sexes: A theoretical review and experimental investigation. Q J Exp Psychol (Hove), 77(6), 1250-1271. https://doi.org/10.1177/17470218231200127
Kail, R., Pellegrino, J., & Carter, P. (1980). Developmental changes in mental rotation. Journal of Expe-rimental Child Psychology, 29(1), 102-116. https://doi.org/10.1016/0022-0965(80)90094-6
Kaltner, S., & Jansen, P. (2014). Mental rotation and motor performance in children with developmen-tal dyslexia. Research in Developmental Disabilities, 35(3), 741-754. https://doi.org/10.1016/j.ridd.2013.10.003
Kawasaki, T., & Higuchi, T. (2013). Immediate beneficial effects of mental rotation using foot stimuli on upright postural stability in healthy participants. Rehabilitation Research and Practice, 2013(1), 890962. https://doi.org/10.1155/2013/890962
Khalfallah, S., Mkaouer, B., Amara, S., Habacha, H., & Souissi, N. (2021). Effect of Differing Exercise Intensities on the Response Time of Gymnasts and Non-Gymnasts in 3d Cube Mental Rotation Task. Science of Gymnastics Journal, 13(3), 301-309. https://doi.org/10.52165/sgj.13.3.301-309
Khalfallah, S., Mkaouer, B., Amara, S., Habacha, H., & Souissi, N. (2022). Effects of Differing Exercise Intensities on the Response Time of Gymnasts and Nongymnasts in a Mental Body Rotation Task. The American Journal of Psychology, 135(1), 69-76. https://doi.org/10.5406/19398298.135.1.06
Klotzbier, T. J., & Schott, N. (2024). Mental rotation abilities of gymnasts and soccer players: a compa-rison of egocentric and object-based transformations. An exploratory and preliminary study. Front Psychol, 15, 1355381. https://doi.org/10.3389/fpsyg.2024.1355381
Krüger, M., & Krist, H. (2009). Imagery and motor processes—When are they connected? The mental rotation of body parts in development. Journal of Cognition and Development, 10(4), 239-261. https://doi.org/10.1080/15248370903389341
Lacroix, E., Deggouj, N., Edwards, M. G., Van Cutsem, J., Van Puyvelde, M., & Pattyn, N. (2021). The Cognitive-Vestibular Compensation Hypothesis: How Cognitive Impairments Might Be the Cost of Coping With Compensation [Perspective]. Frontiers in Human Neuroscience, Volume 15 - 2021. https://doi.org/10.3389/fnhum.2021.732974
Maatoug, H., Baccouch, R., Borji, R., Rebai, H., & Sahli, S. (2023). Effects of music listening on postural balance in adolescents with visual impairment. Perceptual and Motor Skills, 130(1), 112-126. https://doi.org/10.1177/00315125221130548
Marcolin, G., Supej, M., & Paillard, T. (2022). Postural Balance Control in Sport and Exercise. Frontiers in Physiology, 13, 961442. https://doi.org/10.3389/fphys.2022.961442
Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment bui-lder for the social sciences. Behavior research methods, 44(2), 314-324. https://doi.org/10.3758/s13428-011-0168-7
Matos, R. M. N., & Godinho, M. A. B. (2006). Influence of sports practice in the useful field of vision in a simulated driving test. [http://hdl.handle.net/10400.5/1557]. AIESEP 2005 World Congress-" Active lifestyles: the impact of education and sport",
Morawietz, C., & Muehlbauer, T. (2021). Effects of physical exercise interventions on spatial orientati-on in children and adolescents: A systematic scoping review. Frontiers in sports and active li-ving, 3, 664640. https://doi.org/10.3389/fspor.2021.664640
Moreau, D., Mansy-Dannay, A., Clerc, J., & Guerrien, A. (2011). Spatial ability and motor performance: assessing mental rotation processes in elite and novice athletes. International Journal of Sport Psychology, 42(6), 525-547.
Mujdeci, B., Turkyilmaz, D., Yagcioglu, S., & Aksoy, S. (2016). The effects of concurrent cognitive tasks on postural sway in healthy subjects. Brazilian journal of otorhinolaryngology, 82(1), 03-10. https://doi.org/10.1016/j.bjorl.2015.10.011
O'regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and brain sciences, 24(5), 939-973. https://doi.org/10.1017/S0140525X01000115
Ozel, S., Larue, J., & Molinaro, C. (2004). Relation between sport and spatial imagery: comparison of three groups of participants. The Journal of psychology, 138(1), 49-64. https://doi.org/10.3200/JRLP.138.1.49-64
Paillard, T. (2019). Relationship Between Sport Expertise and Postural Skills. Front Psychol, 10, 1428. https://doi.org/10.3389/fpsyg.2019.01428
Piek, J. P., Dawson, L., Smith, L. M., & Gasson, N. (2008). The role of early fine and gross motor develo-pment on later motor and cognitive ability. Human movement science, 27(5), 668-681. https://doi.org/10.1016/j.humov.2007.11.002
Pietsch, S., Böttcher, C., & Jansen, P. (2017). Cognitive motor coordination training improves mental rotation performance in primary school‐aged children. Mind, Brain, and Education, 11(4), 176-180. https://doi.org/10.1111/mbe.12154
Pietsch, S., & Jansen, P. (2012a). Different mental rotation performance in students of music, sport and education. Learning and Individual Differences, 22(1), 159-163. https://doi.org/10.1016/j.lindif.2011.11.012
Pietsch, S., & Jansen, P. (2012b). The relationship between coordination skill and mental rotation abili-ty. Spatial Cognition VIII: International Conference, Spatial Cognition 2012, Kloster Seeon, Germany, August 31–September 3, 2012. Proceedings 8, Berlin, Heidelberg.
Pietsch, S., Jansen, P., & Lehmann, J. (2019). The choice of sports affects mental rotation performance in adolescents. Frontiers in Neuroscience, 13, 224. https://doi.org/10.3389/fnins.2019.00224
Powers, K. L., Brooks, P. J., Aldrich, N. J., Palladino, M. A., & Alfieri, L. (2013). Effects of video-game play on information processing: a meta-analytic investigation. Psychon Bull Rev, 20(6), 1055-1079. https://doi.org/10.3758/s13423-013-0418-z
Richer, N., & Lajoie, Y. (2019). Cognitive task modality influences postural control during quiet stan-ding in healthy older adults. Aging Clinical and Experimental Research, 31(9), 1265-1270. https://doi.org/10.1007/s40520-018-1068-9
Ricotti, L. (2011). Static and dynamic balance in young athletes. Journal of human sport and exercise, 6(4), 616-628.
Rodríguez-Rubio, P. R., Bagur-Calafat, C., López-de-Celis, C., Bueno-Gracía, E., Cabanas-Valdés, R., He-rrera-Pedroviejo, E., & Girabent-Farrés, M. (2020). Validity and Reliability of the Satel 40 Hz Stabilometric Force Platform for Measuring Quiet Stance and Dynamic Standing Balance in Healthy Subjects. International journal of environmental research and public health, 17(21), 7733. https://www.mdpi.com/1660-4601/17/21/7733
Rogge, A. K., Roder, B., Zech, A., Nagel, V., Hollander, K., Braumann, K. M., & Hotting, K. (2017). Balance training improves memory and spatial cognition in healthy adults. Sci Rep, 7(1), 5661. https://doi.org/10.1038/s41598-017-06071-9
Schmid, M., Conforto, S., Lopez, L., & D’Alessio, T. (2007). Cognitive load affects postural control in children. Experimental brain research, 179, 375-385. https://doi.org/0.1007/s00221-006-0795-x
Schmidt, M., Egger, F., Kieliger, M., Rubeli, B., & Schüler, J. (2016). Gymnasts and orienteers display better mental rotation performance than nonathletes. Journal of individual differences, 37(1), 1-7. https://doi.org/10.1027/1614-0001/a000180
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701-703. https://doi.org/10.1126/science.171.3972.701
Steggemann, Y., Engbert, K., & Weigelt, M. (2011). Selective effects of motor expertise in mental body rotation tasks: comparing object-based and perspective transformations. Brain and cognition, 76(1), 97-105. https://doi.org/10.1016/j.bandc.2011.02.013
Stuhr, C., Hughes, C. M., & Stöckel, T. (2020). The role of executive functions for motor performance in preschool children as compared to young adults. Frontiers in Psychology, 11, 1552. https://doi.org/10.3389/fpsyg.2020.01552
Voyer, D., & Jansen, P. (2017). Motor expertise and performance in spatial tasks: A meta-analysis. Hu-man movement science, 54(3), 110-124. https://doi.org/10.1016/j.humov.2017.04.004
Waer, F. B., Sahli, S., Alexe, C. I., Man, M. C., Alexe, D. I., & Burchel, L. O. (2024). The Effects of Listening to Music on Postural Balance in Middle-Aged Women. Sensors, 24(1), 202. https://www.mdpi.com/1424-8220/24/1/202
Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait & posture, 3(4), 193-214. https://doi.org/10.1016/0966-6362(96)82849-9
Wohlschläger, A., & Wohlschläger, A. (1998). Mental and manual rotation. Journal of Experimental Psychology: Human perception and performance, 24(2), 397-412. https://doi.org/10.1037//0096-1523.24.2.397
Woollacott, M., & Shumway-Cook, A. (2002). Attention and the control of posture and gait: a review of an emerging area of research. Gait & Posture, 16(1), 1-14. https://doi.org/10.1016/S0966-6362(01)00156-4
Wraga, M., Thompson, W. L., Alpert, N. M., & Kosslyn, S. M. (2003). Implicit transfer of motor strategies in mental rotation. Brain and cognition, 52(2), 135-143. https://doi.org/10.1016/S0278-2626(03)00033-2
Zar, J. (1984). The Latin Square Experimental Design – Multiway Factorial Analysis of Variance. In J. Zar (Ed.), Biostatistical analysis 2nd ed. (Vol. 2, pp. 185-205). Prentice-Hall.
Zwierko, T., Lesiakowski, P., Redondo, B., & Vera, J. (2022). Examining the ability to track multiple moving targets as a function of postural stability: a comparison between team sports players and sedentary individuals. PeerJ, 10, e13964. https://doi.org/10.7717/peerj.13964
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Besma Bel-Hadj Boubaker, Samiha Amara, Bessem Mkaouer

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess