Equilíbrio postural e rotação mental em ginastas sub-12: comparação com jogadores de andebol e jogadores de videojogos
DOI:
https://doi.org/10.47197/retos.v70.114116Palavras-chave:
Equilíbrio, controlo postural, rotação mental, ginastas, jogadores de andebol, jogadores de videojogosResumo
Introdução: A transição do equilíbrio estático para o dinâmico pode influenciar o desempenho cognitivo, particularmente em tarefas como a rotação mental.
Objectivo: Este estudo investiga o impacto de diferentes condições de equilíbrio postural nas capacidades cognitivas viso-espaciais, especificamente tarefas de rotação mental envolvendo cubos 3D rotacionados e imagens do corpo humano, em ginastas, jogadores de andebol e jogadores de videojogos com menos de 12 anos.
Metodologia: Participaram neste estudo cinquenta jovens voluntários com menos de 12 anos (12 ginastas, 18 jogadores de andebol e 20 jogadores de videojogos). A experiência incluiu tarefas de rotação mental (cubos 3D e corpos humanos) em quatro condições: sem equilíbrio, equilíbrio estático, equilíbrio dinâmico frontal e equilíbrio dinâmico sagital numa plataforma estabilométrica. O desempenho cognitivo foi avaliado pelo tempo de resposta e pela taxa de erro, enquanto o controlo postural foi medido pela oscilação, aceleração e deslocamento do centro de pressão (COP).
Resultados: Foram observados efeitos benéficos imediatos significativos do equilíbrio dinâmico em tarefas cognitivas. As tarefas duplas melhoraram o desempenho no controlo postural e na rotação mental, com redução do tempo de resposta e da oscilação do COP (p < 0,01).
Discussão: Os atletas apresentaram maiores melhorias do que os não atletas, realçando o efeito positivo do treino físico regular com controlo postural na melhoria das capacidades cognitivas.
Conclusões: Estes resultados sugerem que a prática desportiva na infância melhora os sistemas sensório-motor, o controlo neuromuscular e o equilíbrio, que são essenciais para a manutenção da estabilidade e o desenvolvimento das capacidades cognitivas. A integração do treino de equilíbrio e dos desafios cognitivos no treino físico pode otimizar o desempenho cognitivo e motor em atletas jovens.
Referências
Amara, S., Al-Hadabi, B., El-Ashkar, H., Gmada, N., Habacha, H., & Mkaouer, B. (2024a). Does dynamic balance affect cube mental rotation task in badminton vs. volleyball female players? BMC psychology, 12(1), 131. https://doi.org/10.1186/s40359-024-01589-w
Amara, S., Al-Hadabi, B., El-Ashkar, H., Gmada, N., Habacha, H., & Mkaouer, B. (2024b). Effect of dyna-mic balance on human mental rotation task in female badminton vs. volleyball players. Fron-tiers in Psychology, 14, 1338265. https://doi.org/10.3389/fpsyg.2023.1338265
Andreeva, A., Melnikov, A., Skvortsov, D., Akhmerova, K., Vavaev, A., Golov, A., . . . Zemková, E. (2021). Postural stability in athletes: The role of sport direction. Gait & Posture, 89, 120-125. https://doi.org/10.1016/j.gaitpost.2021.07.005
Armitage, K. L., Bulley, A., & Redshaw, J. (2020). Developmental origins of cognitive offloading. Proc Biol Sci, 287(1928), 20192927. https://doi.org/10.1098/rspb.2019.2927
Beauchet, O., Dubost, V., Gonthier, R., & Kressig, R. W. (2005). Dual-Task-Related gait changes in. Ge-rontology, 51(1), 48-52. https://doi.org/10.1159/000081435
Bediou, B., Rodgers, M. A., Tipton, E., Mayer, R. E., Green, C. S., & Bavelier, D. (2023). Effects of action video game play on cognitive skills: A meta-analysis. Technology, Mind, and Behavior, 4(1), 1-21. https://doi.org/10.1037/tmb0000102
Bigelow, R. T., & Agrawal, Y. (2015). Vestibular involvement in cognition: Visuospatial ability, atten-tion, executive function, and memory. Journal of vestibular research, 25(2), 73-89. https://doi.org/10.3233/VES-150544
Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annu. Rev. Psychol., 58(1), 47-73. https://doi.org/0.1146/annurev.psych.57.102904.190152
Blüchel, M., Lehmann, J., Kellner, J., & Jansen, P. (2013). The improvement in mental rotation perfor-mance in primary school-aged children after a two-week motor-training. Educational Psycho-logy, 33(1), 75-86. https://doi.org/10.1080/01443410.2012.707612
Bott, H., Poltz, N., & Ehlert, A. (2023). Assessment of mental rotation performance at primary school age. A computer-based test procedure for first to third grades (cMR). Diagnostica, 69(3), 121-132. https://doi.org/10.1026/0012-1924/a000309
Broglio, S. P., Tomporowski, P. D., & Ferrara, M. S. (2005). Balance performance with a cognitive task: a dual-task testing paradigm. Medicine & Science in Sports & Exercise, 37(4), 689-695. https://doi.org/10.1249/01.MSS.0000159019.14919.09
Busquets, A., Ferrer-Uris, B., Angulo-Barroso, R., & Federolf, P. (2021). Gymnastics experience enhan-ces the development of bipedal-stance multi-segmental coordination and control during pro-prioceptive reweighting. Frontiers in Psychology, 12, 661312. https://doi.org/10.3389/fpsyg.2021.661312
Carlson, R. V., Boyd, K. M., & Webb, D. J. (2004). The revision of the Declaration of Helsinki: past, pre-sent and future. Br J Clin Pharmacol, 57(6), 695-713. https://doi.org/10.1111/j.1365-2125.2004.02103.x
Chen, J., Kwok, A. P. K., & Li, Y. (2023). Effective utilization of attentional resources in postural control in athletes of skill-oriented sports: an event-related potential study. Front Hum Neurosci, 17, 1219022. https://doi.org/10.3389/fnhum.2023.1219022
Cheung, O. S., Hayward, W. G., & Gauthier, I. (2009). Dissociating the effects of angular disparity and image similarity in mental rotation and object recognition. Cognition, 113(1), 128-133. https://doi.org/10.1016/j.cognition.2009.07.008
Cooper, L. A., & Shepard, R. N. (1973). Chronometric studies of the rotation of mental images. In W. G. Chase (Ed.), Visual Information Processing (pp. 75-176). Academic Press. https://doi.org/10.1016/B978-0-12-170150-5.50009-3
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child development, 71(1), 44-56. https://doi.org/10.1111/1467-8624.00117
Estes, D. (1998). Young children's awareness of their mental activity: The case of mental rotation. Child development, 69(5), 1345-1360. https://doi.org/10.1111/j.1467-8624.1998.tb06216.x
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research met-hods, 39(2), 175-191. https://doi.org/10.3758/BF03193146
Feng, T., Li, Y., Ji, Z., & Zhang, Z. (2019). The Role of Time Constraints in Athletes' Egocentric Mental Rotation Performance. Advances in cognitive Psychology, 15(3), 225-235. https://doi.org/10.5709/acp-0270-6
Feng, T., Zhang, Z., Ji, Z., Jia, B., & Li, Y. (2017). Selective Effects of Sport Expertise on the Stages of Mental Rotation Tasks With Object-Based and Egocentric Transformations. Adv Cogn Psychol, 13(3), 248-256. https://doi.org/10.5709/acp-0225-x
Geisen, M., Raab, M., Jansen, P., & Klatt, S. (2024). Embodied mental rotation ability in open-and clo-sed-skill sports: pilot study with a new virtual paradigm. Experimental brain research, 242(3), 653-664. https://doi.org/10.1007/s00221-023-06753-z
Habacha, H., Mallek, M., Moreau, D., Khalfallah, S., & Mkaouer, B. (2022). Differences in Mental Rota-tion Strategies Depend on the Level of Motor Expertise. The American Journal of Psychology, 135(3), 325-336. https://doi.org/10.5406/19398298.135.3.06
Habacha, H., Molinaro, C., Tabben, M., & Lejeune-Poutrain, L. (2014). Implementation of specific motor expertise during a mental rotation task of hands. Experimental brain research, 232(3), 3465-3473. https://doi.org/10.1007/s00221-014-4029-3
Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121-169). Cambridge University Press.
Heilmann, F., Weinberg, H., & Wollny, R. (2022). The impact of practicing open-vs. closed-skill sports on executive functions—A meta-analytic and systematic review with a focus on characteristics of sports. Brain Sciences, 12(8), 1071. https://doi.org/10.3390/brainsci12081071
Heppe, H., Kohler, A., Fleddermann, M.-T., & Zentgraf, K. (2016). The Relationship between Expertise in Sports, Visuospatial, and Basic Cognitive Skills. Frontiers in Psychology, 7, 904. https://doi.org/10.3389/fpsyg.2016.00904
Hofmann, P., Jost, L., & Jansen, P. (2023). Embodied mental rotation–does it affect postural stability? Journal of motor behavior, 55(2), 202-219. https://doi.org/10.1080/00222895.2022.2151970
Hofmann, P., Siebertz, M., & Jansen, P. (2024). No role of working memory in the relation between mental rotation and postural stability. Frontiers in Cognition, 2, 1298371. https://doi.org/10.3389/fcogn.2023.1298371
Hopkins, W. G. (2002). A scale of magnitudes for effect statistics. In W. G. Hopkins (Ed.), A new view of statistics (pp. 411). Sportscience. www.sportsci.org/resource/stats/effectmag.html.
Huxhold, O., Li, S.-C., Schmiedek, F., & Lindenberger, U. (2006). Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention. Brain Research Bu-lletin, 69(3), 294-305. https://doi.org/10.1016/j.brainresbull.2006.01.002
Jansen, P., & Kellner, J. (2015). The role of rotational hand movements and general motor ability in children’s mental rotation performance. Frontiers in Psychology, 6, 984. https://doi.org/10.3389/fpsyg.2015.00984
Jansen, P., Lange, L., & Heil, M. (2011). The influence of juggling on mental rotation performance in children. Biomedical Human Kinetics, 3, 18-22. https://doi.org/10.2478/v10101-011-0005-6
Jansen, P., & Lehmann, J. (2013). Mental rotation performance in soccer players and gymnasts in an object-based mental rotation task. Advances in cognitive Psychology, 9(2), 92-98. https://doi.org/10.2478/v10053-008-0135-8
Jansen, P., Lehmann, J., & Van Doren, J. (2012). Mental rotation performance in male soccer players. PloS one, 7(10), e48620. https://doi.org/10.1371/journal.pone.0048620
Jansen, P., Render, A., Scheer, C., & Siebertz, M. (2020). Mental rotation with abstract and embodied objects as stimuli: evidence from event-related potential (ERP). Exp Brain Res, 238(3), 525-535. https://doi.org/10.1007/s00221-020-05734-w
Jola, C., & Mast, F. W. (2005). Mental Object Rotation and Egocentric Body Transformation: Two Disso-ciable Processes? Spatial Cognition & Computation, 5(2-3), 217-237. https://doi.org/10.1080/13875868.2005.9683804
Jordan, K., Heinze, H.-J., Lutz, K., Kanowski, M., & Jäncke, L. (2001). Cortical activations during the mental rotation of different visual objects. Neuroimage, 13(1), 143-152. https://doi.org/10.1006/nimg.2000.0677
Jost, L., & Jansen, P. (2022). Manual training of mental rotation performance: Visual representation of rotating figures is the main driver for improvements. Q J Exp Psychol (Hove), 75(4), 695-711. https://doi.org/10.1177/17470218211039494
Jost, L., & Jansen, P. (2024). The influence of the design of mental rotation trials on performance and possible differences between sexes: A theoretical review and experimental investigation. Q J Exp Psychol (Hove), 77(6), 1250-1271. https://doi.org/10.1177/17470218231200127
Kail, R., Pellegrino, J., & Carter, P. (1980). Developmental changes in mental rotation. Journal of Expe-rimental Child Psychology, 29(1), 102-116. https://doi.org/10.1016/0022-0965(80)90094-6
Kaltner, S., & Jansen, P. (2014). Mental rotation and motor performance in children with developmen-tal dyslexia. Research in Developmental Disabilities, 35(3), 741-754. https://doi.org/10.1016/j.ridd.2013.10.003
Kawasaki, T., & Higuchi, T. (2013). Immediate beneficial effects of mental rotation using foot stimuli on upright postural stability in healthy participants. Rehabilitation Research and Practice, 2013(1), 890962. https://doi.org/10.1155/2013/890962
Khalfallah, S., Mkaouer, B., Amara, S., Habacha, H., & Souissi, N. (2021). Effect of Differing Exercise Intensities on the Response Time of Gymnasts and Non-Gymnasts in 3d Cube Mental Rotation Task. Science of Gymnastics Journal, 13(3), 301-309. https://doi.org/10.52165/sgj.13.3.301-309
Khalfallah, S., Mkaouer, B., Amara, S., Habacha, H., & Souissi, N. (2022). Effects of Differing Exercise Intensities on the Response Time of Gymnasts and Nongymnasts in a Mental Body Rotation Task. The American Journal of Psychology, 135(1), 69-76. https://doi.org/10.5406/19398298.135.1.06
Klotzbier, T. J., & Schott, N. (2024). Mental rotation abilities of gymnasts and soccer players: a compa-rison of egocentric and object-based transformations. An exploratory and preliminary study. Front Psychol, 15, 1355381. https://doi.org/10.3389/fpsyg.2024.1355381
Krüger, M., & Krist, H. (2009). Imagery and motor processes—When are they connected? The mental rotation of body parts in development. Journal of Cognition and Development, 10(4), 239-261. https://doi.org/10.1080/15248370903389341
Lacroix, E., Deggouj, N., Edwards, M. G., Van Cutsem, J., Van Puyvelde, M., & Pattyn, N. (2021). The Cognitive-Vestibular Compensation Hypothesis: How Cognitive Impairments Might Be the Cost of Coping With Compensation [Perspective]. Frontiers in Human Neuroscience, Volume 15 - 2021. https://doi.org/10.3389/fnhum.2021.732974
Maatoug, H., Baccouch, R., Borji, R., Rebai, H., & Sahli, S. (2023). Effects of music listening on postural balance in adolescents with visual impairment. Perceptual and Motor Skills, 130(1), 112-126. https://doi.org/10.1177/00315125221130548
Marcolin, G., Supej, M., & Paillard, T. (2022). Postural Balance Control in Sport and Exercise. Frontiers in Physiology, 13, 961442. https://doi.org/10.3389/fphys.2022.961442
Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment bui-lder for the social sciences. Behavior research methods, 44(2), 314-324. https://doi.org/10.3758/s13428-011-0168-7
Matos, R. M. N., & Godinho, M. A. B. (2006). Influence of sports practice in the useful field of vision in a simulated driving test. [http://hdl.handle.net/10400.5/1557]. AIESEP 2005 World Congress-" Active lifestyles: the impact of education and sport",
Morawietz, C., & Muehlbauer, T. (2021). Effects of physical exercise interventions on spatial orientati-on in children and adolescents: A systematic scoping review. Frontiers in sports and active li-ving, 3, 664640. https://doi.org/10.3389/fspor.2021.664640
Moreau, D., Mansy-Dannay, A., Clerc, J., & Guerrien, A. (2011). Spatial ability and motor performance: assessing mental rotation processes in elite and novice athletes. International Journal of Sport Psychology, 42(6), 525-547.
Mujdeci, B., Turkyilmaz, D., Yagcioglu, S., & Aksoy, S. (2016). The effects of concurrent cognitive tasks on postural sway in healthy subjects. Brazilian journal of otorhinolaryngology, 82(1), 03-10. https://doi.org/10.1016/j.bjorl.2015.10.011
O'regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and brain sciences, 24(5), 939-973. https://doi.org/10.1017/S0140525X01000115
Ozel, S., Larue, J., & Molinaro, C. (2004). Relation between sport and spatial imagery: comparison of three groups of participants. The Journal of psychology, 138(1), 49-64. https://doi.org/10.3200/JRLP.138.1.49-64
Paillard, T. (2019). Relationship Between Sport Expertise and Postural Skills. Front Psychol, 10, 1428. https://doi.org/10.3389/fpsyg.2019.01428
Piek, J. P., Dawson, L., Smith, L. M., & Gasson, N. (2008). The role of early fine and gross motor develo-pment on later motor and cognitive ability. Human movement science, 27(5), 668-681. https://doi.org/10.1016/j.humov.2007.11.002
Pietsch, S., Böttcher, C., & Jansen, P. (2017). Cognitive motor coordination training improves mental rotation performance in primary school‐aged children. Mind, Brain, and Education, 11(4), 176-180. https://doi.org/10.1111/mbe.12154
Pietsch, S., & Jansen, P. (2012a). Different mental rotation performance in students of music, sport and education. Learning and Individual Differences, 22(1), 159-163. https://doi.org/10.1016/j.lindif.2011.11.012
Pietsch, S., & Jansen, P. (2012b). The relationship between coordination skill and mental rotation abili-ty. Spatial Cognition VIII: International Conference, Spatial Cognition 2012, Kloster Seeon, Germany, August 31–September 3, 2012. Proceedings 8, Berlin, Heidelberg.
Pietsch, S., Jansen, P., & Lehmann, J. (2019). The choice of sports affects mental rotation performance in adolescents. Frontiers in Neuroscience, 13, 224. https://doi.org/10.3389/fnins.2019.00224
Powers, K. L., Brooks, P. J., Aldrich, N. J., Palladino, M. A., & Alfieri, L. (2013). Effects of video-game play on information processing: a meta-analytic investigation. Psychon Bull Rev, 20(6), 1055-1079. https://doi.org/10.3758/s13423-013-0418-z
Richer, N., & Lajoie, Y. (2019). Cognitive task modality influences postural control during quiet stan-ding in healthy older adults. Aging Clinical and Experimental Research, 31(9), 1265-1270. https://doi.org/10.1007/s40520-018-1068-9
Ricotti, L. (2011). Static and dynamic balance in young athletes. Journal of human sport and exercise, 6(4), 616-628.
Rodríguez-Rubio, P. R., Bagur-Calafat, C., López-de-Celis, C., Bueno-Gracía, E., Cabanas-Valdés, R., He-rrera-Pedroviejo, E., & Girabent-Farrés, M. (2020). Validity and Reliability of the Satel 40 Hz Stabilometric Force Platform for Measuring Quiet Stance and Dynamic Standing Balance in Healthy Subjects. International journal of environmental research and public health, 17(21), 7733. https://www.mdpi.com/1660-4601/17/21/7733
Rogge, A. K., Roder, B., Zech, A., Nagel, V., Hollander, K., Braumann, K. M., & Hotting, K. (2017). Balance training improves memory and spatial cognition in healthy adults. Sci Rep, 7(1), 5661. https://doi.org/10.1038/s41598-017-06071-9
Schmid, M., Conforto, S., Lopez, L., & D’Alessio, T. (2007). Cognitive load affects postural control in children. Experimental brain research, 179, 375-385. https://doi.org/0.1007/s00221-006-0795-x
Schmidt, M., Egger, F., Kieliger, M., Rubeli, B., & Schüler, J. (2016). Gymnasts and orienteers display better mental rotation performance than nonathletes. Journal of individual differences, 37(1), 1-7. https://doi.org/10.1027/1614-0001/a000180
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701-703. https://doi.org/10.1126/science.171.3972.701
Steggemann, Y., Engbert, K., & Weigelt, M. (2011). Selective effects of motor expertise in mental body rotation tasks: comparing object-based and perspective transformations. Brain and cognition, 76(1), 97-105. https://doi.org/10.1016/j.bandc.2011.02.013
Stuhr, C., Hughes, C. M., & Stöckel, T. (2020). The role of executive functions for motor performance in preschool children as compared to young adults. Frontiers in Psychology, 11, 1552. https://doi.org/10.3389/fpsyg.2020.01552
Voyer, D., & Jansen, P. (2017). Motor expertise and performance in spatial tasks: A meta-analysis. Hu-man movement science, 54(3), 110-124. https://doi.org/10.1016/j.humov.2017.04.004
Waer, F. B., Sahli, S., Alexe, C. I., Man, M. C., Alexe, D. I., & Burchel, L. O. (2024). The Effects of Listening to Music on Postural Balance in Middle-Aged Women. Sensors, 24(1), 202. https://www.mdpi.com/1424-8220/24/1/202
Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait & posture, 3(4), 193-214. https://doi.org/10.1016/0966-6362(96)82849-9
Wohlschläger, A., & Wohlschläger, A. (1998). Mental and manual rotation. Journal of Experimental Psychology: Human perception and performance, 24(2), 397-412. https://doi.org/10.1037//0096-1523.24.2.397
Woollacott, M., & Shumway-Cook, A. (2002). Attention and the control of posture and gait: a review of an emerging area of research. Gait & Posture, 16(1), 1-14. https://doi.org/10.1016/S0966-6362(01)00156-4
Wraga, M., Thompson, W. L., Alpert, N. M., & Kosslyn, S. M. (2003). Implicit transfer of motor strategies in mental rotation. Brain and cognition, 52(2), 135-143. https://doi.org/10.1016/S0278-2626(03)00033-2
Zar, J. (1984). The Latin Square Experimental Design – Multiway Factorial Analysis of Variance. In J. Zar (Ed.), Biostatistical analysis 2nd ed. (Vol. 2, pp. 185-205). Prentice-Hall.
Zwierko, T., Lesiakowski, P., Redondo, B., & Vera, J. (2022). Examining the ability to track multiple moving targets as a function of postural stability: a comparison between team sports players and sedentary individuals. PeerJ, 10, e13964. https://doi.org/10.7717/peerj.13964
Downloads
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2025 Besma Bel-Hadj Boubaker, Samiha Amara, Bessem Mkaouer

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e assegurar a revista o direito de ser a primeira publicação da obra como licenciado sob a Licença Creative Commons Attribution que permite que outros para compartilhar o trabalho com o crédito de autoria do trabalho e publicação inicial nesta revista.
- Os autores podem estabelecer acordos adicionais separados para a distribuição não-exclusiva da versão do trabalho publicado na revista (por exemplo, a um repositório institucional, ou publicá-lo em um livro), com reconhecimento de autoria e publicação inicial nesta revista.
- É permitido e os autores são incentivados a divulgar o seu trabalho por via electrónica (por exemplo, em repositórios institucionais ou no seu próprio site), antes e durante o processo de envio, pois pode gerar alterações produtivas, bem como a uma intimação mais Cedo e mais do trabalho publicado (Veja O Efeito do Acesso Livre) (em Inglês).
Esta revista é a "política de acesso aberto" de Boai (1), apoiando os direitos dos usuários de "ler, baixar, copiar, distribuir, imprimir, pesquisar, ou link para os textos completos dos artigos". (1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess