Effect of aerobic exercise and rice bran ethanol extract on Akt/mTOR activity and oxidative stress in skeletal muscles in a rat model of high-fat diet-induced obesity

Authors

  • Mojgan Eftekharzadeh Islamic Azad University
  • Sirvan Atashak Azad University
  • Lidia Moradi Azad University
  • Saleh Rahmati Islamic Azad University https://orcid.org/0000-0001-8751-1759
  • Reza Ghafarzadegan Institute of Medicinal Plants
  • Hedieh Tousi Islamic Azad University
  • Enrique Roche Miguel Hernández University https://orcid.org/0000-0001-5128-1672
  • Diego Fernández Lázaro Universidad de Valladolid https://orcid.org/0000-0002-6522-8896
  • Mohammad Ali Azarbayjani Universtity of Valladolid

DOI:

https://doi.org/10.47197/retos.v70.115323

Keywords:

Aerobic exercise, Ak/mTOR, Oxidative stress, Rice bran

Abstract

Introduction and Objective: Insulin resistance is a main complication associated to obesity. Rice bran and exercise seem effective for reducing obesity complications. Therefore, this study aimed to determine the effects of aerobic exercise (EX) and rice bran extract (RB) on the expression of Akt/mTOR genes and oxidative stress markers in the skeletal muscle of rats fed a high-fat diet (HFD).

Methodology: Thirty female Wistar rats were randomly divided into five groups: control normal diet (ND-Con), control HFD (HFD-Con), HFD-aerobic exercise (EX), HFD-RB extract (RB), and HFD-EX-RB. EX-groups ran on a treadmill five times a week for four weeks and RB groups received 60 mg/kg/day of RB extract. At the end of the study, rats were sacrificed, and their quadriceps muscles were removed. Akt/mTOR gene expression and oxidative stress markers were determined.

Results: HFD led to significant decrease in gene expression of Akt, mTOR, superoxide dismutase (SOD) and catalase activities, while increasing malondialdehyde (MDA) concentration. The EX-group showed significant increase in Akt/mTOR gene expression, while no noticeable effects were observed in RB. The Akt gene expression was significantly higher in EX-RB group than in HFD-CON group, with no effect in SOD. RB caused significant increase in SOD activity compared to HFD-Con group. Catalase activity in EX, RB, and EX-RB groups was significantly higher than in the HFD-Con group. The MDA concentration in the EX, RB, and EX-RB groups was significantly lower than in HFD-Con group.

Conclusions: EX and RB can be suitable treatments for reducing HFD complications in skeletal muscle tissue.

References

Ábrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D, Cabello-Verrugio C. (2018). Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. Oxid Med Cell Longev, 2018, 2063179. doi:10.1155/2018/2063179

Ahmed MA, Mohamed MA, Rashed LA, Abd Elbast SA, & Ahmed EA. (2018). Rice Bran Oil Improves In-sulin Resistance by Affecting the Expression of Antioxidants and Lipid-Regulatory Genes. Lipids, 53(5), 505-515. doi:10.1002/lipd.12045

Alizadeh Pahlavani H. (2022). Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors. Front Endocrinol (Lausanne), 13, 811751. doi:10.3389/fendo.2022.811751

Anderson SR, Gilge DA, Steiber AL, & Previs SF. (2008). Diet-induced obesity alters protein synthesis: tissue-specific effects in fasted versus fed mice. Metabolism, 57(3), 347-354. doi:10.1016/j.metabol.2007.10.009

Bae JY, Shin KO, Woo J, Woo SH, Jang KS, Lee YH, & Kang S. (2016). Exercise and dietary change amelio-rate high fat diet induced obesity and insulin resistance via mTOR signaling pathway. J Exerc Nutrition Biochem, 20(2), 28-33. doi:10.20463/jenb.2016.06.20.2.4

Balage M, Sinaud S, Prod'homme M, Dardevet D, Vary TC, Kimball SR, . . . Grizard J. (2001). Amino acids and insulin are both required to regulate assembly of the eIF4E. eIF4G complex in rat skeletal muscle. Am J Physiol Endocrinol Metab, 281(3), E565-574. doi:10.1152/ajpendo.2001.281.3.E565

Bashan N, Kovsan J, Kachko I, Ovadia H, & Rudich A. (2009). Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev, 89(1), 27-71. doi:10.1152/physrev.00014.2008

Buege JA, & Aust SD. (1978). [30] Microsomal lipid peroxidation. In S. Fleischer & L. Packer (Eds.), Methods in Enzymology (Vol. 52, pp. 302-310): Academic Press.

Feng L, Li B, Xi Y, Cai M, & Tian Z. (2022). Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction. Am J Physiol Cell Physiol, 322(2), C164-c176. doi:10.1152/ajpcell.00344.2021

Ferretti R, Moura EG, Dos Santos VC, Caldeira EJ, Conte M, Matsumura CY, . . . Mosqueira M. (2018). High-fat diet suppresses the positive effect of creatine supplementation on skeletal muscle function by reducing protein expression of IGF-PI3K-AKT-mTOR pathway. PLoS One, 13(10), e0199728. doi:10.1371/journal.pone.0199728

Fiorentino VT, Prioletta A, Zuo P, & Folli F. (2013). Hyperglycemia-induced Oxidative Stress and its Role in Diabetes Mellitus Related Cardiovascular Diseases. Current Pharmaceutical Design, 19(32), 5695-5703. doi:http://dx.doi.org/10.2174/1381612811319320005

Fletcher E, Wiggs M, Greathouse KL, Morgan G, & Gordon PM. (2022). Impaired proteostasis in obese skeletal muscle relates to altered immunoproteasome activity. Appl Physiol Nutr Metab, 47(5), 555-564. doi:10.1139/apnm-2021-0764

Guillet C, & Boirie Y. (2005). Insulin resistance: a contributing factor to age-related muscle mass loss? Diabetes Metab, 31 Spec No 2, 5s20-25s26. doi:10.1016/s1262-3636(05)73648-x

Heo JW, Yoo SZ, No MH, Park DH, Kang JH, Kim TW, . . . Kwak HB. (2018). Exercise Training Attenuates Obesity-Induced Skeletal Muscle Remodeling and Mitochondria-Mediated Apoptosis in the Skeletal Muscle. Int J Environ Res Public Health, 15(10). doi:10.3390/ijerph15102301

Huang P-X, Yeh C-L, Yang S-C, Shirakawa H, Chang C-L, Chen L-H, Chiu Y-S, Chiu W-C. (2023). Rice Bran Supplementation Ameliorates Gut Dysbiosis and Muscle Atrophy in Ovariectomized Mice Fed with a High-Fat Diet. Nutrients, 15(16), 3514. https://doi.org/10.3390/nu15163514

Justo, M. L., Candiracci, M., Dantas, A. P., de Sotomayor, M. A., Parrado, J., Vila, E., ... & Rodriguez-Rodriguez, R. (2013). Rice bran enzymatic extract restores endothelial function and vascular contractility in obese rats by reducing vascular inflammation and oxidative stress. The Journal of Nutritional Biochemistry, 24(8), 1453-1461. https://doi.org/10.1016/j.jnutbio.2012.12.004

Karnia MJ, Myslinska D, Dzik KP, Flis DJ, Ciepielewski ZM, Podlacha M, & Kaczor JJ. (2018). The Electri-cal Stimulation of the Bed Nucleus of the Stria Terminalis Causes Oxidative Stress in Skeletal Muscle of Rats. Oxid Med Cell Longev, 2018, 4671213. doi:10.1155/2018/4671213

Kirwan JP, del Aguila LF, Hernandez JM, Williamson DL, O'Gorman DJ, Lewis R, & Krishnan RK. (2000). Regular exercise enhances insulin activation of IRS-1-associated PI3-kinase in human skeletal muscle. J Appl Physiol (1985), 88(2), 797-803. doi:10.1152/jappl.2000.88.2.797

Lambertucci RH, Levada-Pires AC, Rossoni LV, Curi R, & Pithon-Curi TC. (2007). Effects of aerobic ex-ercise training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats. Mech Ageing Dev, 128(3), 267-275. doi:10.1016/j.mad.2006.12.006

Law, B. M., Waye, M. M., So, W. K., & Chair, S. Y. (2017). Hypotheses on the potential of rice bran intake to prevent gastrointestinal cancer through the modulation of oxidative stress. International Journal of Molecular Sciences, 18(7), 1352. doi:10.3390/ijms18071352

Lawler JM, Kwak HB, Song W, & Parker JL. (2006). Exercise training reverses downregulation of HSP70 and antioxidant enzymes in porcine skeletal muscle after chronic coronary artery occlusion. Am J Physiol Regul Integr Comp Physiol, 291(6), R1756-1763. doi:10.1152/ajpregu.00271.2006

Lee S, Kim MB, Kim C, & Hwang JK. (2018). Whole grain cereal attenuates obesity-induced muscle atro-phy by activating the PI3K/Akt pathway in obese C57BL/6N mice. Food Sci Biotechnol, 27(1), 159-168. doi:10.1007/s10068-017-0277-x

Li G, Liu JY, Zhang HX, Li Q, & Zhang SW. (2015). Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity. Physiol Res, 64(3), 355-367. doi:10.33549/physiolres.932851

Liu R, Xu Y, Chang M, Tang L, Lu M, Liu R, . . . Wang X. (2021). Antioxidant interaction of α-tocopherol, γ-oryzanol and phytosterol in rice bran oil. Food Chem, 343, 128431. doi:10.1016/j.foodchem.2020.128431

Mascher H, Andersson H, Nilsson PA, Ekblom B, & Blomstrand E. (2007). Changes in signalling path-ways regulating protein synthesis in human muscle in the recovery period after endurance ex-ercise. Acta Physiol (Oxf), 191(1), 67-75. doi:10.1111/j.1748-1716.2007.01712.x

Mattei L, Francisqueti-Ferron FV, Garcia JL, Ferron AJT, Silva C, Gregolin CS, . . . Corrêa CR. (2021). Anti-oxidant and anti-inflammatory properties of gamma- oryzanol attenuates insulin resistance by increasing GLUT- 4 expression in skeletal muscle of obese animals. Mol Cell Endocrinol, 537, 111423. doi:10.1016/j.mce.2021.111423

Nojima H, Watanabe H, Yamane K, Kitahara Y, Sekikawa K, Yamamoto H, . . . Kohno N. (2008). Effect of aerobic exercise training on oxidative stress in patients with type 2 diabetes mellitus. Metabo-lism, 57(2), 170-176. doi:10.1016/j.metabol.2007.08.021

Od-Ek P, Deenin W, Malakul W, Phoungpetchara I, & Tunsophon S. (2020). Anti-obesity effect of Carica papaya in high-fat diet fed rats. Biomed Rep, 13(4), 30. doi:10.3892/br.2020.1337

Ou Y, Jobu K, Ishida T, Morisawa S, Fujita H, Kawada K, . . . Miyamura M. (2022). Saikokeishikankyoto extract alleviates muscle atrophy in KKAy mice. Journal of Natural Medicines, 76(2), 379-388. doi:10.1007/s11418-021-01590-2

Papaconstantinou J. (2009). Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity determination. Mol Cell Endocrinol, 299(1), 89-100. doi:10.1016/j.mce.2008.11.025

Pedrini MT, Kranebitter M, Niederwanger A, Kaser S, Engl J, Debbage P, . . . Patsch JR. (2005). Human triglyceride-rich lipoproteins impair glucose metabolism and insulin signalling in L6 skeletal muscle cells independently of non-esterified fatty acid levels. Diabetologia, 48(4), 756-766. doi:10.1007/s00125-005-1684-8

Pereira MG, Voltarelli VA, Tobias GC, de Souza L, Borges GS, Paixão AO, . . . Brum PC. (2021). Aerobic Exercise Training and In Vivo Akt Activation Counteract Cancer Cachexia by Inducing a Hyper-trophic Profile through eIF-2α Modulation. Cancers (Basel), 14(1). doi:10.3390/cancers14010028

Roy B, Curtis ME, Fears LS, Nahashon SN, & Fentress HM. (2016). Molecular Mechanisms of Obesity-Induced Osteoporosis and Muscle Atrophy. Front Physiol, 7, 439. doi:10.3389/fphys.2016.00439

Saji N, Francis N, Schwarz LJ, Blanchard CL, & Santhakumar AB. (2020). The Antioxidant and Anti-Inflammatory Properties of Rice Bran Phenolic Extracts. Foods, 9(6). doi:10.3390/foods9060829

Silveira LR, Fiamoncini J, Hirabara SM, Procópio J, Cambiaghi TD, Pinheiro CH, . . . Curi R. (2008). Updat-ing the effects of fatty acids on skeletal muscle. J Cell Physiol, 217(1), 1-12. doi:10.1002/jcp.21514

Tang L, Cao W, Zhao T, Yu K, Sun L, Guo J, . . . Ta D. (2021). Weight-bearing exercise prevents skeletal muscle atrophy in ovariectomized rats. Journal of Physiology and Biochemistry, 77(2), 273-281. doi:10.1007/s13105-021-00794-0

Tremblay F, & Marette A. (2001). Amino acid and insulin signaling via the mTOR/p70 S6 kinase path-way. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem, 276(41), 38052-38060. doi:10.1074/jbc.M106703200

Ugwoke CK, Cvetko E, & Umek N. (2022). Skeletal Muscle Microvascular Dysfunction in Obesity-Related Insulin Resistance: Pathophysiological Mechanisms and Therapeutic Perspectives. Int J Mol Sci, 23(2). doi:10.3390/ijms23020847

Ulbricht ASSF, Lima DD-d, Werlang-Coelho C, Magro DD-D, Donat B, Vieira MR, . . . Pereira EM. (2019). Effects of aerobic exercise training on oxidative stress in the skeletal muscles of obese rats. Revista Brasileira de Medicina do Esporte, 25, 404-408. doi:10.1590/1517-869220192505184278

Vasilaki A, McArdle F, Iwanejko LM, & McArdle A. (2006). Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age. Mech Ageing Dev, 127(11), 830-839. doi:10.1016/j.mad.2006.08.004

Vlavcheski F, Den Hartogh DJ, Giacca A, & Tsiani E. (2020). Amelioration of High-Insulin-Induced Skele-tal Muscle Cell Insulin Resistance by Resveratrol Is Linked to Activation of AMPK and Restora-tion of GLUT4 Translocation. Nutrients, 12(4). doi:10.3390/nu12040914

Wang D, Jiang DM, Yu RR, Zhang LL, Liu YZ, Chen JX, . . . Liu YP. (2022). The Effect of Aerobic Exercise on the Oxidative Capacity of Skeletal Muscle Mitochondria in Mice with Impaired Glucose Tol-erance. J Diabetes Res, 2022, 3780156. doi:10.1155/2022/3780156

Wycherley TP, Brinkworth GD, Noakes M, Buckley JD, & Clifton PM. (2008). Effect of caloric re-striction with and without exercise training on oxidative stress and endothelial function in obese subjects with type 2 diabetes. Diabetes Obes Metab, 10(11), 1062-1073. doi:10.1111/j.1463-1326.2008.00863.x

Zhang J, Zhuang P, Wang Y, Song L, Zhang M, Lu Z, . . . Li H. (2014). Reversal of muscle atrophy by Zhi-mu-Huangbai herb-pair via Akt/mTOR/FoxO3 signal pathway in streptozotocin-induced dia-betic mice. PLoS One, 9(6), e100918. doi:10.1371/journal.pone.0100918

Downloads

Published

08/29/2025

Issue

Section

Original Research Article

How to Cite

Eftekharzadeh, M., Atashak, S., Moradi, L., Rahmati, S., Ghafarzadegan, R., Tousi, H., Roche, E., Fernández Lázaro, D., & Azarbayjani, M. A. (2025). Effect of aerobic exercise and rice bran ethanol extract on Akt/mTOR activity and oxidative stress in skeletal muscles in a rat model of high-fat diet-induced obesity. Retos, 70, 1586-1596. https://doi.org/10.47197/retos.v70.115323