Impact of a fructose-free diet on anthropometric measurements: an interventional study

Authors

  • Ali Hussein Talib Alaqdawi MBChB, CABMS/CM, Community Physician, Al-Rusafa-Baghdad Health Directorate, Ministry of Health, Baghdad, Iraq.
  • Saja Ali Ahmed MBChB, FICMS (Radiology), Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
  • Monaf Faik Al-Samarraee MBChB, PhD (Community Medicine), Department of Family and Community Medicine, College of Medicine, Ibn Sina University for Medical and Pharmaceutical Sciences, Baghdad, Iraq. https://orcid.org/0009-0007-3515-5052
  • Muthana Abdulrazzaq Jabbar Consultant Doctor, Medical City Directorate, Ministry of Health, Baghdad, Iraq.

DOI:

https://doi.org/10.47197/retos.v70.117237

Keywords:

Fructose, waist circumference, diet, intervention, Iraq

Abstract

Background: Obesity represents a major global health challenge, with fructose consumption implicated in metabolic dysfunction. This study compared fructose-free diets (FFD) with conventional hypocaloric approaches for obesity management.

Methods: A randomized controlled trial was conducted at Al-Najaf Nutrition Clinic, Iraq, involving 114 overweight/obese adults (ages 25-65). Participants were randomized to either FFD (<15g fructose/day) or hypocaloric control groups (500-700 kcal deficit) for 12 weeks. Primary outcomes included waist circumference and visceral fat levels. Secondary outcomes assessed anthropometric parameters, lipid profiles, and liver function markers.

Results: Both groups achieved significant waist circumference reductions without between-group differences (FFD: -12.4±8.2cm vs Control: -13.1±7.8cm, p>0.05). Visceral fat showed greater reduction in FFD group (-4.36±2.1 vs -3.06±1.9, p=0.001). Triglycerides decreased more significantly in FFD groups for both males (-102.8±38.2 vs -78.4±32.1 mg/dl, p=0.014) and females (-98.4±35.6 vs -65.2±28.9 mg/dl, p=0.001). Weight loss and liver enzyme improvements were equivalent between groups.

Conclusions: Fructose-free and hypocaloric diets produce comparable anthropometric improvements, with FFD showing superior triglyceride reduction. Both approaches represent viable obesity management strategies, with intervention selection based on patient preferences and metabolic profiles.

References

Conway, J. M., Ingwersen, L. A., Vinyard, B. T., & Moshfegh, A. J. (2003). Effectiveness of the US De-partment of Agriculture 5-step multiple-pass method in assessing food intake in obese and no-nobese women. American Journal of Clinical Nutrition, 77(5), 1171–1178. https://doi.org/10.1093/ajcn/77.5.1171

Dehghan, M., & Merchant, A. T. (2008). Is bioelectrical impedance accurate for use in large epidemio-logical studies? Nutrition Journal, 7, 26. https://doi.org/10.1186/1475-2891-7-26

DiNicolantonio, J. J., & O'Keefe, J. H. (2018). The importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open Heart, 5(2), e000946. https://doi.org/10.1136/openhrt-2018-000946

Domínguez-Coello, S., Carrillo-Fernández, L., Gobierno-Hernández, J., Carretero-Pérez, M., Sánchez-Villegas, A., & Cabrera de León, A. (2020). Decreased consumption of added fructose reduces waist circumference and blood glucose concentration in patients with overweight and obesity. Nutrients, 12(4), 1149. https://doi.org/10.3390/nu12041149

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146

Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clini-cal Chemistry, 18(6), 499–502. https://doi.org/10.1093/clinchem/18.6.499

Hall, K. D., Heymsfield, S. B., Kemnitz, J. W., Klein, S., Schoeller, D. A., & Speakman, J. R. (2012). Energy balance and its components: Implications for body weight regulation. American Journal of Clin-ical Nutrition, 95(4), 989–994. https://doi.org/10.3945/ajcn.112.036350

Harris, J. A., & Benedict, F. G. (1918). A biometric study of human basal metabolism. Proceedings of the National Academy of Sciences USA, 4(12), 370–373. https://doi.org/10.1073/pnas.4.12.370

Herman, M. A., & Birnbaum, M. J. (2021). Molecular aspects of fructose metabolism and metabolic dis-ease. Cell Metabolism, 33(12), 2329–2354. https://doi.org/10.1016/j.cmet.2021.05.012

Jafari, A., Faghfouri, A. H., & Nikpayam, O. (2024). The effect of low-fructose diet on anthropometric and metabolic factors: A systematic review and meta-analysis. Nutrition, Metabolism and Car-diovascular Diseases, 34(2), 281–293. https://doi.org/10.1016/j.numecd.2023.10.025

Jensen, T., Abdelmalek, M. F., Sullivan, S., Nadeau, K. J., Green, M., Roncal, C., et al. (2018). Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. Journal of Hepatology, 68(5), 1063–1075. https://doi.org/10.1016/j.jhep.2018.01.019

Johnson, R. J., Nakagawa, T., Sanchez-Lozada, L. G., Shafiu, M., Sundaram, S., Le, M., et al. (2013). Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes, 62(10), 3307–3315. https://doi.org/10.2337/db12-1814

Ludwig, D. S., Hu, F. B., Tappy, L., & Brand-Miller, J. (2018). Dietary carbohydrates: Role of quality and quantity in chronic disease. BMJ, 361, k2340. https://doi.org/10.1136/bmj.k2340

Malik, V. S., & Hu, F. B. (2015). Fructose and cardiometabolic health: What the evidence from sugar-sweetened beverages tells us. Journal of the American College of Cardiology, 66(14), 1615–1624. https://doi.org/10.1016/j.jacc.2015.08.025

Marriott, B. P., Olsho, L., Hadden, L., & Connor, P. (2010). Intake of added sugars and selected nutrients in the United States, National Health and Nutrition Examination Survey (NHANES) 2003–2006. Critical Reviews in Food Science and Nutrition, 50(3), 228–258. https://doi.org/10.1080/10408390903467537

Mozaffarian, D. (2016). Dietary and policy priorities for cardiovascular disease, diabetes, and obesity. Circulation, 133(2), 187–225. https://doi.org/10.1161/CIRCULATIONAHA.115.018585

Musaiger, A. O. (2011). Overweight and obesity in eastern mediterranean region: Prevalence and pos-sible causes. Journal of Obesity, 2011, 407237. https://doi.org/10.1155/2011/407237

National Heart, Lung, and Blood Institute. (1998). Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. National Institutes of Health. https://www.nhlbi.nih.gov/files/docs/guidelines/ob_gdlns.pdf

Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., et al. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 384(9945), 766–781. https://doi.org/10.1016/S0140-6736(14)60460-8

Ross, R., Neeland, I. J., Yamashita, S., Shai, I., Seidell, J., Magni, P., et al. (2020). Waist circumference as a vital sign in clinical practice: A consensus statement from the IAS and ICCR Working Group on Visceral Obesity. Nature Reviews Endocrinology, 16(3), 177–189. https://doi.org/10.1038/s41574-019-0310-7

Schwimmer, J. B., Ugalde-Nicalo, P., Welsh, J. A., Angeles, J. E., Cordero, M., Harlow, K. E., et al. (2019). Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: A randomized clinical trial. JAMA, 321(3), 256–265. https://doi.org/10.1001/jama.2019.2291

Simons, N., Veeraiah, P., Simons, P. I. H. G., Schalkwijk, C. G., Stehouwer, C. D. A., van der Kallen, C. J. H., et al. (2021). Effects of fructose restriction on liver steatosis (FRUITLESS): A double-blind ran-domized controlled trial. American Journal of Clinical Nutrition, 113(1), 391–400. https://doi.org/10.1093/ajcn/nqaa358

Sweatt, K., Garvey, W. T., & Martins, C. (2024). Strengths and limitations of BMI in the diagnosis of obe-sity: What is the path forward? Current Obesity Reports, 13(2), 584–595. https://doi.org/10.1007/s13679-024-00568-x

Teff, K. L., Elliott, S. S., Tschöp, M., Kieffer, T. J., Rader, D., Heiman, M., et al. (2004). Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and in-creases triglycerides in women. Journal of Clinical Endocrinology & Metabolism, 89(6), 2963–2972. https://doi.org/10.1210/jc.2003-031855

Villareal, D. T., Apovian, C. M., Kushner, R. F., & Klein, S. (2005). Obesity in older adults: Technical re-view and position statement of the American Society for Nutrition and NAASO, The Obesity So-ciety. American Journal of Clinical Nutrition, 82(5), 923–934. https://doi.org/10.1093/ajcn/82.5.923

World Health Organization. (2008). Waist circumference and waist-hip ratio: Report of a WHO expert consultation. World Health Organization. https://www.who.int/publications/i/item/9789241501491

World Health Organization. (2015). Guideline: Sugars intake for adults and children. World Health Or-ganization. https://www.who.int/publications/i/item/9789241549028

World Health Organization. (2023). Obesity and overweight. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

Younossi, Z. M., Corey, K. E., & Lim, J. K. (2021). AGA clinical practice update on lifestyle modification using diet and exercise to achieve weight loss in the management of nonalcoholic fatty liver disease: Expert review. Gastroenterology, 160(4), 912–918. https://doi.org/10.1053/j.gastro.2020.11.051

Downloads

Published

08/18/2025

Issue

Section

Original Research Article

How to Cite

Alaqdawi, A. H. T., Ahmed, S. A., Al-Samarraee, M. F., & Jabbar, M. A. (2025). Impact of a fructose-free diet on anthropometric measurements: an interventional study. Retos, 70, 1512-1520. https://doi.org/10.47197/retos.v70.117237