Effects of low-volume HIIT and MICT training in adults with insulin resistance: a systematic review
DOI:
https://doi.org/10.47197/retos.v73.117280Keywords:
High-Intensity interval training , insulin resistance, diabetes, glycemic control, low-volume exerciseAbstract
Introduction: Physical exercise is a key component in the management of insulin resistance (IR) and type 2 diabetes (T2DM). Low-volume high-intensity interval training (LV-HIIT) has been proposed as a time-efficient alternative to moderate-intensity continuous training (MICT), which is widely recommended in international guidelines.
Objective: To synthesize the evidence from randomized controlled trials comparing the effects of LV-HIIT and MICT on glycemic parameters and insulin sensitivity in adults with metabolic disorders.
Methods: A systematic search was conducted in PubMed, Scopus, Web of Science, Cochrane Library, and Google Scholar (2015–2024). Randomized controlled trials comparing LV-HIIT (≤30 minutes total, 85–95% HRmax or VO₂max) versus MICT (≥30 minutes, 55–70% HRmax) in adults ≥50 years were included. Primary outcomes were fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), fasting plasma insulin (FPI), HOMA-IR, and insulin sensitivity.
Results: Eight studies (n=270) were included. Both protocols improved FPG, HbA1c, FPI, and HOMA-IR, with greater absolute reductions observed in LV-HIIT, although no consistent statistically significant differences were found between groups. Insulin sensitivity improved significantly with LV-HIIT in some studies that applied direct measurement methods.
Conclusion: LV-HIIT is an effective and time-efficient strategy to improve insulin sensitivity, inducing rapid metabolic adaptations with comparable or superior outcomes to MICT.
References
Ahmad, A. M., Mahmoud, A. M., Serry, Z. H., Mohamed, M. M., & Abd Elghaffar, H. A. (2023). Effects of low- versus high-volume high-intensity interval training on glycemic control and quality of life in obese women with type 2 diabetes: A randomized controlled trial. Journal of Exercise Science & Fitness, 21(4), 395–404. https://doi.org/10.1016/j.jesf.2023.08.003
Álvarez, C., Ramirez-Campillo, R., Martinez-Salazar, C., Mancilla, R., Flores-Opazo, M., Cano-Montoya, J., et al. (2016). Low-volume high-intensity interval training as a therapy for type 2 diabetes. International Journal of Sports Medicine, 37(9), 723–729. https://doi.org/10.1055/s-0042-104935
American Diabetes Association. (2024). Standards of medical care in diabetes—2024. Diabetes Care, 47(Suppl. 1), S1–S300. https://doi.org/10.2337/dc24-S001
American College of Sports Medicine., Liguori, G., Feito, Y., Fountaine, C., & Roy, B. (Eds.). (2022). ACSM’s guidelines for exercise testing and prescription (11th ed.). Wolters Kluwer. Recuperado de https://www.acsm.org/education-resources/books/guidelines exercise testing prescription
Bird, S. R., & Hawley, J. A. (2017). Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport & Exercise Medicine, 3(1), e000143. https://doi.org/10.1136/bmjsem-2017-000143
Cassidy, S., Thoma, C., Houghton, D., & Trenell, M. I. (2020). High-intensity interval training improves liver lipid content and insulin sensitivity in metabolic disease. Journal of Clinical Endocrinology & Metabolism, 105(4), 1119–1132. https://doi.org/10.1210/clinem/dgz171
Colberg, S. R., Sigal, R. J., Yardley, J. E., Riddell, M. C., Dunstan, D. W., Dempsey, P. C., Horton, E. S., Casto-rino, K., & Tate, D. F. (2022). Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care, 45(11), 2432–2450. https://doi.org/10.2337/dci22-0021
Czech, M. P. (2017). Insulin action and resistance in obesity and type 2 diabetes. Nature Medicine, 23(7), 804–814. https://doi.org/10.1038/nm.4350
DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., Hu, F. B., Kahn, C. R., Raz, I., Shulman, G. I., Simonson, D. C., & Weiss, R. (2021). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 7, 36. https://doi.org/10.1038/s41572-021-00251-0
Dixit, S., Maiya, A., & Shastry, B. (2017). Effect of moderate-intensity aerobic exercise on glycosylated haemoglobin among elderly patients with type 2 diabetes and peripheral neuropathy. Indian Journal of Medical Research, 145(1), 129–135. https://doi.org/10.4103/ijmr.IJMR_699_14
Fisher, G., Brown, A. W., Bohan Brown, M. M., Alcorn, A., Noles, C., Winwood, L., Resuehr, H., George, B., Jeansonne, M. M., & Allison, D. B. (2015). High-intensity interval vs. moderate-intensity training to improve cardiometabolic health in overweight or obese men: A randomized controlled trial. PLOS ONE, 10(10), e0138853. https://doi.org/10.1371/journal.pone.0138853
Francois, M. E., & Little, J. P. (2015). Effectiveness and safety of high-intensity interval training in patients with type 2 diabetes. Diabetes Spectrum, 28(1), 39–44. https://doi.org/10.2337/diaspect.28.1.39
Fuentealba Sánchez, J. C., Hermosilla Palma, F., Olate Pasten, Y., Reyes Amigo, T., Díaz-Alvarado, M., Luarte Rocha, C., Gómez-Álvarez, N., Molina-Márquez, I., & Gómez-Álvarez, N. (2025). Efecto de entrenamientos aeróbico en el perfil glucémico en personas mayores con diabetes tipo 2. Una revisión sistemática. Retos, 71, 207-219. https://doi.org/10.47197/retos.v71.116213
Gallo-Villegas, J. A., Ramírez-Vélez, R., García-Hermoso, A., Silva-Gómez, D. A., González-Ruíz, K., & Iz-quierdo, M. (2020). High-intensity interval training versus moderate-intensity continuous training on cardiometabolic risk factors in adults with metabolic syndrome: A randomized clinical trial. Journal of Translational Medicine, 18(1), 1–9. https://doi.org/10.1186/s12967-020-02560-6
Gillen, J. B., & Gibala, M. J. (2014). Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Applied Physiology, Nutrition, and Metabolism, 39(3), 409–412. https://doi.org/10.1139/apnm-2013-0187
Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E., & Gregg, E. W. (2019). Global trends in diabetes complications: A review of current evidence. Diabetologia, 62(1), 3–16. https://doi.org/10.1007/s00125-018-4711-2
Hawley, J. A., & Lessard, S. J. (2008). Exercise training-induced improvements in insulin action. Acta Physiologica, 192(1), 127–135. https://doi.org/10.1111/j.1748-1716.2007.01783.x
Huh, J. Y., Panagiotou, G., Mougios, V., Brinkoetter, M., Vamvini, M. T., Schneider, B. E., & Mantzoros, C. S. (2019). Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. Journal of Clinical Endocrinology & Metabolism, 100(11), 4072–4080. https://doi.org/10.1210/jc.2015-2217
International Diabetes Federation. (2025). IDF Diabetes Atlas: 11ᵃ edición. Brussels: International Dia-betes Federation. Disponible en https://diabetesatlas.org/resources/idf-diabetes-atlas-2025/
Jelleyman, C., Yates, T., O’Donovan, G., Gray, L. J., King, J. A., Khunti, K., & Davies, M. J. (2015). The effects of high-intensity interval training on glucose regulation and insulin resistance: A meta-analysis. Obesity Reviews, 16(11), 942–961. https://doi.org/10.1111/obr.12317
Kivimäki, M., Nyberg, S. T., Batty, G. D., Fransson, E. I., Heikkilä, K., Alfredsson, L., & Theorell, T. (2020). Long working hours and risk of cardiovascular disease and type 2 diabetes: A systematic review and meta-analysis of published and unpublished data. Lancet Diabetes & Endocrinology, 3(1), 27–34. https://doi.org/10.1016/S2213-8587(14)70178-0
Koh, H. E., Ørtenblad, N., Winding, K. M., Hellsten, Y., Mortensen, S. P., & Nielsen, J. (2018). High-intensity interval, but not endurance, training induces muscle fiber type-specific subsarcolemmal lipid droplet size reduction in type 2 diabetic patients. American Journal of Physiology-Endocrinology and Metabolism, 315(5), E872–E884. https://doi.org/10.1152/ajpendo.00161.2018
Lanzi, S., Codecasa, F., Cornacchia, M., Maestrini, S., Capodaglio, P., Brunani, A., Fanari, P., Salvadori, A., & Malatesta, D. (2015). Short-term HIIT and Fatmax training increase aerobic and metabolic fit-ness in men with class II and III obesity. Obesity, 23(10), 1987–1994. https://doi.org/10.1002/oby.21206
Li, J., Cheng, W., & Ma, H. (2022). A comparative study of health efficacy indicators in subjects with T2DM applying power cycling to 12 weeks of low-volume high-intensity interval training and moderate-intensity continuous training. Journal of Diabetes Research, 2022, 9273830. https://doi.org/10.1155/2022/9273830
Li, Y., Yang, X., Ma, H., Wang, Y., & Sun, C. (2022). Low-volume high-intensity interval training improves glycemic control and insulin resistance in patients with type 2 diabetes: A randomized controlled trial. Diabetes Therapy, 13(4), 837–849. https://doi.org/10.1007/s13300-021-01196-4
Little, J. P., Safdar, A., Wilkin, G. P., Tarnopolsky, M. A., & Gibala, M. J. (2011). A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: Potential mechanisms. Journal of Physiology, 588(6), 1011–1022. https://doi.org/10.1113/jphysiol.2009.181743
MacInnis, M. J., & Gibala, M. J. (2017). Physiological adaptations to interval training and the role of exercise intensity. Journal of Physiology, 595(9), 2915–2930. https://doi.org/10.1113/JP27319
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Perry, C. G., Heigenhauser, G. J., Bonen, A., & Spriet, L. L. (2008). High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Applied Physiology, Nutrition, and Metabolism, 33(6), 1112–1123. https://doi.org/10.1139/H08-097
Robinson, M. M., Dasari, S., Konopka, A. R., Johnson, M. L., Manjunatha, S., Esponda, R. R., & Nair, K. S. (2015). Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metabolism, 21(6), 922–930. https://doi.org/10.1016/j.cmet.2015.04.025
RezkAllah, S. S., & Takla, M. K. (2019). Effects of different dosages of interval training on glycemic con-trol in people with prediabetes: A randomized controlled trial. Diabetes Spectrum, 32(2), 125–131. https://doi.org/10.2337/ds18-0024
Ryan, B. J., Schleh, M. W., Ahn, C., Ludzki, A. C., Gillen, J. B., Varshney, P., Van Pelt, D. W., Pitchford, L. M., Chenevert, T. L., Gioscia-Ryan, R. A., Howton, S. M., Rode, T., Hummel, S. L., Burant, C. F., Little, J. P., & Horowitz, J. F. (2020). Moderate-intensity exercise and high-intensity interval training affect insulin sensitivity similarly in obese adults. The Journal of Clinical Endocrinology & Metabolism, 105(8), e2941–e2959. https://doi.org/10.1210/clinem/dgaa345
Sabag, A., Way, K. L., Sultana, R. N., Keating, S. E., Gerofi, J. A., Chuter, V. H., Byrne, N. M., Baker, M. K., George, J., Caterson, I. D., Twigg, S. M., & Johnson, N. A. (2020). The effect of a novel low-volume aerobic exercise intervention on liver fat in type 2 diabetes: A randomized controlled trial. Diabetes Care, 43(10), 2371–2378. https://doi.org/10.2337/dc19-2523
Sabag, A., Way, K. L., Keating, S. E., Sultana, R. N., O’Connor, H. T., Baker, M. K., Chuter, V. H., George, J., Caterson, I. D., Johnson, N. A. (2020). The effects of a 12-week low-volume HIIT program on liver fat, glycemic control, and cardiorespiratory fitness in adults with type 2 diabetes. Diabetes Care, 43(7), 1650–1657. https://doi.org/10.2337/dc19-2668
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., ... & Wild, S. H. (2020). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843
Safarimosavi, S., Mohebbi, H., & Rohani, H. (2021). High-intensity interval vs. continuous endurance training: Preventive effects on hormonal changes and physiological adaptations in prediabetes patients. Journal of Strength and Conditioning Research, 35(3), 731–738. https://doi.org/10.1519/JSC.0000000000002709
Samuel, V. T., & Shulman, G. I. (2016). The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. Journal of Clinical Investigation, 126(1), 12–22. https://doi.org/10.1172/JCI77812
Shepherd, S. O., Wilson, O. J., Taylor, A. S., Thøgersen-Ntoumani, C., Adlan, A. M., Wagenmakers, A. J., et al. (2015). Low-volume high-intensity interval training in a gym setting improves cardiometabolic and psychological health. PLOS ONE, 10(9), e0139056. https://doi.org/10.1371/journal.pone.0139056
Stanford, K. I., & Goodyear, L. J. (2014). Exercise and type 2 diabetes: Molecular mechanisms regulating glucose uptake in skeletal muscle. Advances in Physiology Education, 38(4), 308–314. https://doi.org/10.1152/advan.00080.2014
Suryo Putro, W. A., Hidayatullah, M. F., Doewes, M., Purnama, S. K., Riyadi, S., & Umar, F. (2024). El en-trenamiento en intervalos de alta intensidad a largo plazo reduce la glucosa en sangre en pacien-tes con diabetes mellitus tipo 2 (Long-term high-intensity interval training reduces blood gluco-se in type 2 diabetes mellitus patients). Retos, 60, 653-658. https://doi.org/10.47197/retos.v60.109024
Umpierre, D., Ribeiro, P. A. B., Kramer, C. K., Leitão, C. B., Zucatti, A. T. N., Azevedo, M. J., Gross, J. L., Ribeiro, J. P., & Schaan, B. D. (2011). Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: A systematic review and meta-analysis. JAMA, 305(17), 1790–1799. https://doi.org/10.1001/jama.2011.576
Way, K. L., Hackett, D. A., Baker, M. K., & Johnson, N. A. (2022). The impact of HIIT on glycemic control and cardiovascular risk factors in type 2 diabetes: A systematic review and meta-analysis. Sports Medicine, 52(5), 1025–1043. https://doi.org/10.1007/s40279-021-01589-5
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Yoselyn Reyes Sánchez, Rocio Bustos Barahona, Eduardo Cruzat Bravo

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.