Eight weeks of physical activity significantly increases BDNF levels in high school students in Indonesia: a randomized controlled trial
DOI:
https://doi.org/10.47197/retos.v73.117944Keywords:
Physical Activity, Health, Physical Exercise, BDNFAbstract
Background: Many factors influence cognitive function. One such factor is regular exercise. Previous studies have shown that acute physical activity increases BDNF, a biomarker of cognitive function. However, chronic exercise has not been widely discussed.
Objective: This study aims to determine the effect of eight weeks of physical activity on increasing BDNF levels in high school students in Indonesia.
Methods: This study involved 50 healthy women divided into 2 groups. The experimental group (CE) (n=25) and the control group (CO) (n=25) before and after being used in this experimental study. The study participants were between 17 and 20 years old. People were selected through random sampling, not forgetting they agreed to the informed consent given by the researcher to them as research respondents and after they were selected, two groups were formed, from which the treatment group (CE) did physical activity three times a week for eight weeks, and the control group (CO) did not receive any physical activity intervention. The study was conducted for eight weeks, starting with the collection of information about the characteristics of the subjects. The subjects were then instructed to do physical activities guided by professional physical education teachers. The training consisted of sports games including volleyball, basketball, and soccer. Before the training on the first day, blood was taken as pretest data, and after undergoing treatment for eight weeks, blood was taken again as posttest data.
Results: The results of the study showed that eight weeks of physical activity were proven to significantly increase BDNF levels in healthy women p < 0.05 *.
Conclusion: Therefore, it can be concluded that chronic physical activity can have a significant impact on cognitive function through BDNF levels. Therefore, regular physical exercise can be recommended to prevent cognitive decline.
References
Cho, H. C., Kim, J., Kim, S., Son, Y. H., Lee, N., & Jung, S. H. (2012). The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO 2max performance in healthy college men. Neuroscience Letters, 519(1), 78–83. https://doi.org/10.1016/j.neulet.2012.05.025
Cho, S. Y., So, W. Y., & Roh, H. T. (2017). The effects of taekwondo training on peripheral Neuroplasticity-Related growth factors, cerebral blood flow velocity, and cognitive functions in healthy children: A randomized controlled trial. International Journal of Environmental Research and Public Health, 14(5), 1–10. https://doi.org/10.3390/ijerph14050454
Dany, D., Arianti, D., Rossa, M., Aji Prayitno, D., Erfarenata, F., & Cahyanto Wibawa, J. (2025). Physiological responses of resistance training in increasing brain-derived neurotrophic factor levels: a systematic review. Retos, 68, 1250–1261. https://doi.org/10.47197/retos.v68.115912
Devenney, K. E., Guinan, E. M., Kelly, Á. M., Mota, B. C., Walsh, C., Olde Rikkert, M., Schneider, S., & Lawlor, B. (2019). Acute high-intensity aerobic exercise affects brain-derived neurotrophic factor in mild cognitive impairment: A randomised controlled study. BMJ Open Sport and Exercise Medicine, 5(1), 1–8. https://doi.org/10.1136/bmjsem-2018-000499
Ding, Q., Vaynman, S., Akhavan, M., Ying, Z., & Gomez-Pinilla, F. (2006). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience, 140(3), 823–833. https://doi.org/10.1016/j.neuroscience.2006.02.084
El Hayek, L., Khalifeh, M., Zibara, V., Abi Assaad, R., Emmanuel, N., Karnib, N., El-Ghandour, R., Nasrallah, P., Bilen, M., Ibrahim, P., Younes, J., Abou Haidar, E., Barmo, N., Jabre, V., Stephan, J. S., & Sleiman, S. F. (2019). 17. El lactato media los efectos del ejercicio sobre el aprendizaje y la memoria através de la activación dependiente de SIRT1 del factor neurotrófico derivado delcerebro (BDNF) del hipocampo. — Lactate mediates the effects of exercise on learning and. Journal of Neuroscience, 39(13), 2369–2382.
Erickson, K. I., Miller, D. L., & Roecklein, K. A. (2012). The aging hippocampus: Interactions between exercise, depression, and BDNF. Neuroscientist, 18(1), 82–97. https://doi.org/10.1177/1073858410397054
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3017–3022. https://doi.org/10.1073/pnas.1015950108
Farmer, J., Zhao, X., Van Praag, H., Wodtke, K., Gage, F. H., & Christie, B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male sprague-dawley rats in vivo. Neuroscience, 124(1), 71–79. https://doi.org/10.1016/j.neuroscience.2003.09.029
Gale, S. A., Acar, D., & Daffner, K. R. (2018). Dementia. American Journal of Medicine, 131(10), 1161–1169. https://doi.org/10.1016/j.amjmed.2018.01.022
Gogniat, M. A., Robinson, T. L., Jean, K. R., & Stephen Miller, L. (2022). Physical activity moderates the association between executive function and functional connectivity in older adults. Aging Brain, 2, 100036. https://doi.org/10.1016/j.nbas.2022.100036
Griffin, É. W., Mullally, S., Foley, C., Warmington, S. A., O’Mara, S. M., & Kelly, Á. M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology and Behavior, 104(5), 934–941. https://doi.org/10.1016/j.physbeh.2011.06.005
Haapasalo, A., Sipola, I., Larsson, K., Åkerman, K. E. O., Stoilov, P., Stamm, S., Wong, G., & Castrén, E. (2002). Regulation of TRKB surface expression by brain-derived neurotrophic factor and truncated TRKB isoforms. Journal of Biological Chemistry, 277(45), 43160–43167. https://doi.org/10.1074/jbc.M205202200
Hötting, K., Schickert, N., Kaiser, J., Röder, B., & Schmidt-Kassow, M. (2016). The effects of acute physical exercise on memory, peripheral BDNF, and cortisol in young adults. Neural Plasticity, 2016. https://doi.org/10.1155/2016/6860573
Iso-Markku, P., Kujala, U. M., Knittle, K., Polet, J., Vuoksimaa, E., & Waller, K. (2022). Physical activity as a protective factor for dementia and Alzheimer’s disease: systematic review, meta-analysis and quality assessment of cohort and case-control studies. British Journal of Sports Medicine, 56(12), 701–709. https://doi.org/10.1136/bjsports-2021-104981
Jeon, Y. K., & Ha, C. H. (2017). The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environmental Health and Preventive Medicine, 22(1), 1–6. https://doi.org/10.1186/s12199-017-0643-6
Jiang, N., Lv, J., Zhang, Y., Sun, X., Yao, C., Wang, Q., He, Q., & Liu, X. (2023). Protective effects of ginsenosides Rg1 and Rb1 against cognitive impairment induced by simulated microgravity in rats. Frontiers in Pharmacology, 14(April), 1–11. https://doi.org/10.3389/fphar.2023.1167398
Lammers, M. D., Aneli, N. M., de Oliveira, G. G., de Oliveira Maciel, S. F. V., Zanini, D., Manica, A., de Resende e Silva, D. T., Bagatini, M. D., Sevigny, J., De Sa, C. A., Manfredi, L. H., & Cardoso, A. M. (2020). The anti-inflammatory effect of resistance training in hypertensive women: The role of purinergic signaling. Journal of Hypertension, 38(12), 2490–2500. https://doi.org/10.1097/HJH.0000000000002578
Lima Giacobbo, B., Doorduin, J., Klein, H. C., Dierckx, R. A. J. O., Bromberg, E., & de Vries, E. F. J. (2019). Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Molecular Neurobiology, 56(5), 3295–3312. https://doi.org/10.1007/s12035-018-1283-6
Lippi, G., Mattiuzzi, C., & Sanchis-Gomar, F. (2020). Updated overview on interplay between physical exercise, neurotrophins, and cognitive function in humans. Journal of Sport and Health Science, 9(1), 74–81. https://doi.org/10.1016/j.jshs.2019.07.012
Long, S., Benoist, C., & Weidner, W. (2023). World Alzheimer Report 2023. 94.
Lukkahatai, N., Ong, I. L., Benjasirisan, C., & Saligan, L. N. (2025). Brain-Derived Neurotrophic Factor (BDNF) as a Marker of Physical Exercise or Activity Effectiveness in Fatigue, Pain, Depression, and Sleep Disturbances: A Scoping Review. Biomedicines, 13(2), 1–21. https://doi.org/10.3390/biomedicines13020332
Miranda, M., Morici, J. F., Zanoni, M. B., & Bekinschtein, P. (2019). Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Frontiers in Cellular Neuroscience, 13(August), 1–25. https://doi.org/10.3389/fncel.2019.00363
Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K., Chalek, J., Abd-Allah, F., Abdoli, A., Abualhasan, A., Abu-Gharbieh, E., Akram, T. T., Al Hamad, H., Alahdab, F., Alanezi, F. M., Alipour, V., Almustanyir, S., Amu, H., Ansari, I., Arabloo, J., Ashraf, T., … Vos, T. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 7(2), e105–e125. https://doi.org/10.1016/S2468-2667(21)00249-8
Nichols, E., Szoeke, C. E. I., Vollset, S. E., Abbasi, N., Abd-Allah, F., Abdela, J., Aichour, M. T. E., Akinyemi, R. O., Alahdab, F., Asgedom, S. W., Awasthi, A., Barker-Collo, S. L., Baune, B. T., Béjot, Y., Belachew, A. B., Bennett, D. A., Biadgo, B., Bijani, A., Bin Sayeed, M. S., … Murray, C. J. L. (2019). Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 88–106. https://doi.org/10.1016/S1474-4422(18)30403-4
Pickett, J., & Brayne, C. (2019). The scale and profile of global dementia research funding. The Lancet, 394(10212), 1888–1889. https://doi.org/10.1016/S0140-6736(19)32599-1
Piepmeier, A. T., Etnier, J. L., Wideman, L., Berry, N. T., Kincaid, Z., & Weaver, M. A. (2020). A preliminary investigation of acute exercise intensity on memory and BDNF isoform concentrations. European Journal of Sport Science, 20(6), 819–830. https://doi.org/10.1080/17461391.2019.1660726
Pollán, M., Casla-Barrio, S., Alfaro, J., Esteban, C., Segui-Palmer, M. A., Lucia, A., & Martín, M. (2020). Exercise and cancer: a position statement from the Spanish Society of Medical Oncology. Clinical and Translational Oncology, 22(10), 1710–1729. https://doi.org/10.1007/s12094-020-02312-y
Putra, D. P., Wibawa, J. C., & Putro, B. N. (2025). Physical exercise as a key to activating fat burning through the activation of uncoupling protein 1 (ucp1) in adipose tissue: a scoping review. Retos, 67, 1061–1075. https://doi.org/10.47197/retos.v67.111997
Reycraft, J. T., Islam, H., Townsend, L. K., Hayward, G. C., Hazell, T. O. M. J., & MacPherson, R. E. K. (2020). Exercise Intensity and Recovery on Circulating Brain-derived Neurotrophic Factor. Medicine and Science in Sports and Exercise, 52(5), 1210–1217. https://doi.org/10.1249/MSS.0000000000002242
Ribeiro, D., Petrigna, L., Pereira, F. C., Muscella, A., Bianco, A., & Tavares, P. (2021). The impact of physical exercise on the circulating levels of BDNF and NT 4/5: A review. International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/ijms22168814
Roig, M., Nordbrandt, S., Geertsen, S. S., & Nielsen, J. B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience and Biobehavioral Reviews, 37(8), 1645–1666. https://doi.org/10.1016/j.neubiorev.2013.06.012
Romero Garavito, A., Díaz Martínez, V., Juárez Cortés, E., Negrete Díaz, J. V., & Montilla Rodríguez, L. M. (2024). Impact of physical exercise on the regulation of brain-derived neurotrophic factor in people with neurodegenerative diseases. Frontiers in Neurology, 15(January), 1–16. https://doi.org/10.3389/fneur.2024.1505879
Sáenz Jiménez, C. (2021). Beneficios del Ejercicio Físico sobre la Neuroplasticidad y la Cognición. NeuroRehabNews, 2(Octubre), 1–2. https://doi.org/10.37382/nrn.octubre.2017.524
Sleiman, S. F., & Chao, M. V. (2015). Downstream Consequences of Exercise Through the Action of BDNF. Brain Plasticity, 1(1), 143–148. https://doi.org/10.3233/bpl-150017
Tsai, S. J. (2018). Critical issues in BDNF Val66met genetic studies of neuropsychiatric disorders. Frontiers in Molecular Neuroscience, 11(May), 1–15. https://doi.org/10.3389/fnmol.2018.00156
Tyler, W. J., & Pozzo-Miller, L. D. (2001). BDNF Enhances Quantal Neurotransmitter Release and Increases the Number of Docked Vesicles at the Active Zones of Hippocampal Excitatory Synapses, The journal of Neuroscience, 21, 4249-4258, doi: 10.1523/JNEUROSCI.21-12-04249.2001. 21(12), 4249–4258.
Ventriglia, M., Zanardini, R., Bonomini, C., Zanetti, O., Volpe, D., Pasqualetti, P., Gennarelli, M., & Bocchio-Chiavetto, L. (2013). Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed Research International, 2013. https://doi.org/10.1155/2013/901082
Vivar, C., Peterson, B. D., & van Praag, H. (2016). Running rewires the neuronal network of adult-born dentate granule cells. NeuroImage, 131, 29–41. https://doi.org/10.1016/j.neuroimage.2015.11.031
Wan, J., Ma, L., Jiao, X., Dong, W., Lin, J., Qiu, Y., Wu, W., Liu, Q., Chen, C., Huang, H., Li, S., Zheng, H., & Wu, Y. (2024). Impaired synaptic plasticity and decreased excitability of hippocampal glutamatergic neurons mediated by BDNF downregulation contribute to cognitive dysfunction in mice induced by repeated neonatal exposure to ketamine. CNS Neuroscience and Therapeutics, 30(2), 1–18. https://doi.org/10.1111/cns.14604
Wang, W. H., He, G. P., Xiao, X. P., Gu, C., & Chen, H. Y. (2012). Relationship between brain-derived neurotrophic factor and cognitive function of obstructive sleep apnea/hypopnea syndrome patients. Asian Pacific Journal of Tropical Medicine, 5(11), 906–910. https://doi.org/10.1016/S1995-7645(12)60169-2
Weaver, S. R., Skinner, B. D., Furlong, R., Lucas, R. A. I., Cable, N. T., Rendeiro, C., McGettrick, H. M., & Lucas, S. J. E. (2021). Cerebral Hemodynamic and Neurotrophic Factor Responses Are Dependent on the Type of Exercise. Frontiers in Physiology, 11(January), 1–14. https://doi.org/10.3389/fphys.2020.609935
Won, J., Callow, D. D., Pena, G. S., Gogniat, M. A., Kommula, Y., Arnold-Nedimala, N. A., Jordan, L. S., & Smith, J. C. (2021). Evidence for exercise-related plasticity in functional and structural neural network connectivity. Neuroscience and Biobehavioral Reviews, 131(301), 923–940. https://doi.org/10.1016/j.neubiorev.2021.10.013
Xu, L., Zhu, L., Zhu, L., Chen, D., Cai, K., Liu, Z., & Chen, A. (2021). Moderate exercise combined with enriched environment enhances learning and memory through bdnf/trkb signaling pathway in rats. International Journal of Environmental Research and Public Health, 18(16). https://doi.org/10.3390/ijerph18168283
Zhao, T., Pan, P., Zhou, Y., Zhang, X., Li, Q., & Zhou, Y. (2025). Age-sex differences in Alzheimer’s and related dementias burden and risk factors in east and Southeast Asia: results from the 2021 GBD study. Frontiers in Aging Neuroscience, 17(June), 1–12. https://doi.org/10.3389/fnagi.2025.1562148
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Soleh Fudin, Nendra Febrianto, Agus Budi Santosa; Eko Andi Susilo; Junian Cahyanto Wibawa

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.