Analysis of internal and external load in elite Chilean skydivers during a competition
DOI:
https://doi.org/10.47197/retos.v61.108954Keywords:
EnglishAbstract
In skydiving, the monitoring of external and internal load is essential to establish energy demands. The objective of the study was to analyze the internal and external load performed by the Chilean national skydiving team during a national championship. A non- experimental, cross-sectional and descriptive study was carried out with the participation of six Chilean elite male skydivers (32.0 ± 3.2 years). Body composition was assessed through electrical bioimpedance (BIA); the internal load was analyzed from heart rate monitoring, and the external load was evaluated from accelerometry. The results showed that the skydivers had a fat-free mass of 61.3 ± 4.5 kg (representing 80.1 ± 2.3%), while the fat mass was 15.3 ± 2.5 kg (equivalent to 19.9 ± 2.3%). Their muscle mass measured 34.8 ± 2.8 kg (accounting for 45.5 ± 1.5%). Additionally, the skydivers engaged in 76.4 ± 13.1 minutes of moderate to vigorous physical activity per day, with a daily step count of 11.040 ± 2,202. The average heart rate during the competition was 104.0 ± 14.0 bpm. In conclusion, the physical activity undertaken by the skydivers during the competition primarily fell within the light to moderate intensity range, highlighting the sport's technical emphasis over its physical demands
Keywords: Energy expenditure, heart rate monitoring, accelerometry, exercise nutrition physiology
References
Aandstad, A., Holtberget, K., Hageberg, R., Holme, I., & Anderssen, S. A. (2014). Validity and reliability of bioelectrical impedance analysis and skinfold thickness in predicting body fat in military personnel. Military Medicine, 179(2), 208–217. https://doi.org/10.7205/MILMED-D-12-00545
Ainslie, P., Reilly, T., & Westerterp, K. (2003). Estimating human energy expenditure: a review of techniques with particu-lar reference to doubly labelled water. Sports Medicine, 33(9), 683–698. https://doi.org/10.2165/00007256-200333090-00004
Arieli, R., & Constantini, N. (2012). Energy balance among female athletes Harefuah, 151(2), 82–128.
Bahr, R., Ingnes, I., Vaage, O., Sejersted, O. M., & Newsholme, E. A. (1987). Effect of duration of exercise on excess postexercise O2 consumption. Journal of Applied Physiology (Bethesda, Md.: 1985), 62(2), 485–490. https://doi.org/10.1152/jappl.1987.62.2.485
Barthel, C., Halvachizadeh, S., Gamble, J. G., Pape, H. C., & Rauer, T. (2023). Recreational Skydiving-Really That Dan-gerous? A Systematic Review. International Journal of Environmental Research and Public Health, 20(2), 1254. https://doi.org/10.3390/ijerph20021254
Braun, W. A., Hawthorne, W. E., & Markofski, M. M. (2005). Acute EPOC response in women to circuit training and treadmill exercise of matched oxygen consumption. European Journal of Applied Physiology, 94(5-6), 500–504. https://doi.org/10.1007/s00421-005-1383-7
Brinkmans, N., Plasqui, G., van Loon, L., & van Dijk, J. W. (2024). Energy expenditure and dietary intake in professional female football players in the Dutch Women's League: Implications for nutritional counselling. Journal of Sports Sciences, 42(4), 313–322. https://doi.org/10.1080/02640414.2024.2329850
Costello, N., Deighton, K., Preston, T., Matu, J., Rowe, J., Sawczuk, T., Halkier, M., Read, D. B., Weaving, D., & Jones, B. (2018). Collision activity during training increases total energy expenditure measured via doubly labelled water. Euro-pean Journal of Applied Physiology, 118(6), 1169–1177. https://doi.org/10.1007/s00421-018-3846-7
Cruz Marcos, S. D. L., Silleras, M., Camina Martín, M., Carreño Enciso, L., Miján de la Torre, A., Galgani, J. E., & Redon-do del Río, M. (2015). Concordancia entre calorimetría indirecta y modelos predictivos en una población sana española. Nutrición Hospitalaria, 32(2), 888-896. https://dx.doi.org/10.3305/nh.2015.32.2.9162
Dávalos-Ibañez, A., Barrios-Gómez, E. M., Sánchez-Hernández, E., Rocha-López, L., & Viveros-Gómez, M. A. (2017). Ensayo clínico del gasto energético de alumnas de la Escuela Militar de Enfermeras: una comparación de métodos. Re-vista de Sanidad Militar, 70(3), 260-264.
DeGroot, D. W., Quinn, T. J., Kertzer, R., Vroman, N. B., & Olney, W. B. (1998). Circuit weight training in cardiac pa-tients: determining optimal workloads for safety and energy expenditure. Journal of Cardiopulmonary Rehabilitation, 18(2), 145–152. https://doi.org/10.1097/00008483-199803000-00008
Deitrick, R. W., Holmes, D. L., & Murphy, M. (1985). Physiological characteristics of elite sport parachutists. Aviation, Space, and Environmental Medicine, 56(4), 351–357.
Ekelund, U., Sjöström, M., Yngve, A., Poortvliet, E., Nilsson, A., Froberg, K., Wedderkopp, N., & Westerterp, K. (2001). Physical activity assessed by activity monitor and doubly labeled water in children. Medicine and Science in Sports and Exercise, 33(2), 275–281. https://doi.org/10.1097/00005768-200102000-00017
Ekelund, U., Tomkinson, G., & Armstrong, N. (2011). What proportion of youth are physically active? Measurement is-sues, levels and recent time trends. British Journal of Sports Medicine, 45(11), 859–865. https://doi.org/10.1136/bjsports-2011-090190
Ekelund, U., Yngve, A., Westerterp, K., & Sjöström, M. (2002). Energy expenditure assessed by heart rate and doubly labeled water in young athletes. Medicine and Science in Sports and Exercise, 34(8), 1360–1366. https://doi.org/10.1097/00005768-200208000-00019
Ellis, D. G., Morton, J. P., Close, G. L., & Donovan, T. F. (2024). Energy Expenditure of Elite Male and Female Profes-sional Tennis Players During Habitual Training. International Journal of Sport Nutrition and Exercise Metabolism, 34(3), 172–178. https://doi.org/10.1123/ijsnem.2023-0197
Esliger, D. W., Rowlands, A. V., Hurst, T. L., Catt, M., Murray, P., & Eston, R. G. (2011). Validation of the GENEA Accelerometer. Medicine and Science in Sports and Exercise, 43(6), 1085–1093. https://doi.org/10.1249/MSS.0b013e31820513be
Frączek, B., Grzelak, A., & Klimek, A. T. (2019). Analysis of Daily Energy Expenditure of Elite Athletes in Relation to their Sport, the Measurement Method and Energy Requirement Norms. Journal of Human Kinetics, 70, 81–92. https://doi.org/10.2478/hukin-2019-0049
Gómez-Carmona, C. D., Bastida-Castillo, A., Ibáñez, S. J., & Pino-Ortega, J. (2020). Accelerometry as a method for exter-nal workload monitoring in invasion team sports. A systematic review. PloS One, 15(8), e0236643. https://doi.org/10.1371/journal.pone.0236643
Hallal, P. C., Reichert, F. F., Clark, V. L., Cordeira, K. L., Menezes, A. M., Eaton, S., Ekelund, U., & Wells, J. C. (2013). Energy expenditure compared to physical activity measured by accelerometry and self-report in adolescents: a validation study. PloS One, 8(11), e77036. https://doi.org/10.1371/journal.pone.0077036
Harris JA, Benedict FG. (1918). A biometric study of human basal metabolism. Proc Natl Acad Sci U S A., 4(12):370–3. https://doi.org/10.1073/pnas.4.12.370.
Hawley, J. A., Dennis, S. C., Lindsay, F. H., & Noakes, T. D. (1995). Nutritional practices of athletes: are they sub-optimal?. Journal of Sports Sciences, 13 Spec No, S75–S81. https://doi.org/10.1080/02640419508732280
Herrera-Amante, C. A., Ramos-García, C. O., Alacid, F., Quiroga-Morales, L. A., Martínez-Rubio, A. J., & Bonilla, D. A. (2021). Development of alternatives to estimate resting metabolic rate from anthropometric variables in paralympic swimmers. Journal of Sports Sciences, 39(18), 2133–2143. https://doi.org/10.1080/02640414.2021.1922175
Hill, R. J., & Davies, P. S. (2001). Energy expenditure during 2 wk of an ultra-endurance run around Australia. Medicine and Science in Sports and Exercise, 33(1), 148–151. https://doi.org/10.1097/00005768-200101000-00022
Hoos, M. B., Plasqui, G., Gerver, W. J., & Westerterp, K. R. (2003). Physical activity level measured by doubly labeled water and accelerometry in children. European Journal of Applied Physiology, 89(6), 624–626. https://doi.org/10.1007/s00421-003-0891-6
Jagim AR, Camic CL, Kisiolek J, Luedke J, Erickson J, Jones MT, et al (2018). Accuracy of resting metabolic rate predic-tion equations in athletes. Journal of Strength and Conditioning Research, 32(7):1875–81. https://doi.org/10.1519/JSC.0000000000002111.
Johnson, R. K., Russ, J., & Goran, M. I. (1998). Physical activity related energy expenditure in children by doubly labeled water as compared with the Caltrac accelerometer. International journal of obesity and related metabolic disorders: Jour-nal of the International Association for the Study of Obesity, 22(11), 1046–1052. https://doi.org/10.1038/sj.ijo.0800723
Kapri, E.; Dey, S.; Mehta, M.; Deshpande, N.; Zemková, E (2023). Analysis of Daily Activity Pattern to Estimate the Physi-cal Activity Level and Energy Expenditure of Elite and Non-Elite Athletes. Appl. Sci. 13, 2763. https://doi.org/10.3390/app13052763
Kelleher, A. R., Hackney, K. J., Fairchild, T. J., Keslacy, S., & Ploutz-Snyder, L. L. (2010). The metabolic costs of recip-rocal supersets vs. traditional resistance exercise in young recreationally active adults. Journal of Strength and Conditioning Research, 24(4), 1043–1051. https://doi.org/10.1519/JSC.0b013e3181d3e993
Kim, N., & Park, J. (2023). Total energy expenditure of collision team sports players measured using doubly labeled water: a systematic review. Physical Activity and Nutrition, 27(1), 66–75. https://doi.org/10.20463/pan.2023.0009
Koehler, K., & Drenowatz, C. (2017). Monitoring Energy Expenditure Using a Multi-Sensor Device-Applications and Limi-tations of the SenseWear Armband in Athletic Populations. Frontiers in Physiology, 8, 983. https://doi.org/10.3389/fphys.2017.00983
Lipert, A., & Jegier, A. (2009). Measurement of physical activity. Med Sport, 3(6), 155-68.
Loucks A. B. (2004). Energy balance and body composition in sports and exercise. Journal of Sports Sciences, 22(1), 1–14. https://doi.org/10.1080/0264041031000140518
Machado, T., Serrano, J., Pino-Ortega, J., Silveira, P., Antúnez, A., & Ibáñez, S. J. (2022). Analysis of the Objective Inter-nal Load in Portuguese Skydivers in the First Jump of the Day. Sensors (Basel, Switzerland), 22(9), 3298. https://doi.org/10.3390/s22093298
Marra, M., Montagnese, C., Sammarco, R., Amato, V., Della Valle, E., Franzese, A., Contaldo, F., & Pasanisi, F. (2015). Accuracy of predictive equations for estimating resting energy expenditure in obese adolescents. The Journal of Pediatrics, 166(6), 1390–6.e1. https://doi.org/10.1016/j.jpeds.2015.03.013
Melby CL, Schmidt WD, Corrigan D. (1990). Resting metabolic rate in weight-cycling collegiate wrestlers compared with physically active, noncycling control subjects. Am J Clin Nutr., 52(3):409–14. https://doi.org/10.1093/ajcn/52.3.409.
Meyer, V. J., Lee, Y., Böttger, C., Leonbacher, U., Allison, A. L., & Shirtcliff, E. A. (2015). Experience, cortisol reactivity, and the coordination of emotional responses to skydiving. Frontiers in Human Neuroscience, 9, 138. https://doi.org/10.3389/fnhum.2015.00138
Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO (1990). A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr., 51(2):241–7. https://doi.org/10.1093/ajcn/51.2.241.
Migueles, J. H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nyström, C., Mora-Gonzalez, J., Löf, M., Labayen, I., Ruiz, J. R., & Ortega, F. B. (2017). Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Medicine, 47(9), 1821–1845. https://doi.org/10.1007/s40279-017-0716-0
Ndahimana, D., & Kim, E. K. (2017). Measurement Methods for Physical Activity and Energy Expenditure: a Review. Clin-ical Nutrition Research, 6(2), 68–80. https://doi.org/10.7762/cnr.2017.6.2.68
Owen, O. E., Holup, J. L., D’Alessio, D. A., Craig, E. S., Polansky, M., Smalley, K. J., Kavle, E. C., Bushman, M. C., Owen, L. R., & Mozzoli, M. A. (1987). A reappraisal of the caloric requirements of men. The American Journal of Clinical Nutrition, 46(6), 875–885. https://doi.org/10.1093/ajcn/46.6.875
Poehlman ET, Melby CL, Badylak SF. (1988). Resting metabolic rate and postprandial thermogenesis in highly trained and untrained males. Am J Clin Nutr., 47(5):793–8. https://doi.org/10.1093/ajcn/47.5.793.
Ribeyre, J., Fellmann, N., Montaurier, C., Delaître, M., Vernet, J., Coudert, J., & Vermorel, M. (2000). Daily energy expenditure and its main components as measured by whole-body indirect calorimetry in athletic and non-athletic ado-lescents. The British Journal of Nutrition, 83(4), 355–362.
Sasaki, J. E., John, D., & Freedson, P. S. (2011). Validation and comparison of ActiGraph activity monitors. Journal of Science and Medicine in Sport, 14(5), 411–416. https://doi.org/10.1016/j.jsams.2011.04.003
Schofield W. N. (1985). Predicting basal metabolic rate, new standards and review of previous work. Human Nutrition. Clin-ical Nutrition, 39 Suppl 1, 5–41.
Scott, C. B., Littlefield, N. D., Chason, J. D., Bunker, M. P., & Asselin, E. M. (2006). Differences in oxygen uptake but equivalent energy expenditure between a brief bout of cycling and running. Nutrition & Metabolism, 3, 1. https://doi.org/10.1186/1743-7075-3-1
Strath, S. J., Kaminsky, L. A., Ainsworth, B. E., Ekelund, U., Freedson, P. S., Gary, R. A., Richardson, C. R., Smith, D. T., Swartz, A. M., & American Heart Association Physical Activity Committee of the Council on Lifestyle and Cardi-ometabolic Health and Cardiovascular, Exercise, Cardiac Rehabilitation and Prevention Committee of the Council on Clinical Cardiology, and Council (2013). Guide to the assessment of physical activity: Clinical and research applications: a scientific statement from the American Heart Association. Circulation, 128(20), 2259–2279. https://doi.org/10.1161/01.cir.0000435708.67487.da
TEisenmann, J. C., Welk, G. J., Wickel, E. E., & Blair, S. N. (2007). Combined influence of cardiorespiratory fitness and body mass index on cardiovascular disease risk factors among 8–18-year-old youth: The Aerobics Center Longitudinal Study. International Journal of Pediatric Obesity : IJPO : an official Journal of the International Association for the Study of Obesity, 2(2), 66–72. https://doi.org/10.1080/17477160601133713
Trappe, T. A., Gastaldelli, A., Jozsi, A. C., Troup, J. P., & Wolfe, R. R. (1997). Energy expenditure of swimmers during high volume training. Medicine and Science in Sports and Exercise, 29(7), 950–954. https://doi.org/10.1097/00005768-199707000-00015
Van Hees, V. T., Renström, F., Wright, A., Gradmark, A., Catt, M., Chen, K. Y., Löf, M., Bluck, L., Pomeroy, J., Ware-ham, N. J., Ekelund, U., Brage, S., & Franks, P. W. (2011). Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer. PloS One, 6(7), e22922. https://doi.org/10.1371/journal.pone.0022922
Westerterp K. R. (2001). Limits to sustainable human metabolic rate. The Journal of Experimental Biology, 204(Pt 18), 3183–3187. https://doi.org/10.1242/jeb.204.18.3183
Westerterp K. R. (2013). Physical activity and physical activity induced energy expenditure in humans: measurement, de-terminants, and effects. Frontiers in Physiology, 4, 90. https://doi.org/10.3389/fphys.2013.00090
Westerterp, K. R., Saris, W. H., van Es, M., & ten Hoor, F. (1986). Use of the doubly labeled water technique in humans during heavy sustained exercise. Journal of Applied Physiology, 61(6), 2162–2167. https://doi.org/10.1152/jappl.1986.61.6.2162
White, T., Westgate, K., Wareham, N. J., & Brage, S. (2016). Estimation of Physical Activity Energy Expenditure during Free-Living from Wrist Accelerometry in UK Adults. PloS One, 11(12), e0167472. https://doi.org/10.1371/journal.pone.0167472
World Health Organization. (1985). Energy and Protein Requirements. Report of a Joint FAO/WHO/UNU Expert Con-sultation. World Health Organ Tech Rep Ser. 724:1–206.
World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical re-search involving human subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053
Yáñez-Sepúlveda, R., Alvear-Ordenes, I., Vargas-Silva, J., Hernández-Jaña, S., Olivares-Arancibia, J., & Tuesta, M. (2021). Características de Composición Corporal, Ángulo de Fase y Agua Corporal en Paracaidistas Chilenos de Elite. Internation-al Journal of Morphology, 39(6), 1564-1569. https://dx.doi.org/10.4067/S0717-95022021000601564
Zakowski B, Wagner I, Domzalski M. Analysis of a Military Parachutist Injury - A Retrospective Review of Over 37,000 Landings‡ [published correction appears in Mil Med. 2019 Mar 1;184(3-4):112. doi: 10.1093/milmed/usy416]. Mil Med. 2019;184(1-2):e261-e265. doi:10.1093/milmed/usy315
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Retos

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.