Level of skeletal troponin I as a marker of skeletal muscle damage after eccentric exercise: a systematic review and meta-analysis

Authors

DOI:

https://doi.org/10.47197/retos.v70.113189

Keywords:

eccentric contraction, eccentric exercise, EIMD, muscle damage, skeletal troponin I

Abstract

Introduction: Eccentric exercise is known to cause muscle damage, referred to as Exercise Induced Muscle damage (EIMD), particularly when performed for the first time. Skeletal troponin I (sTnI) is a highly specific biomarker of skeletal muscle injury, and its release has been demonstrated in several studies following eccentric exercise.

Objective: The aim of this study was to examine the time-course of sTnI release following eccentric exercise.

Methods: Articles were retrieved through searches of Ovid, CINAHL, Scopus, Web of Science, Embase, and PubMed using keywords related to eccentric exercise, muscle damage, and skeletal troponin I. This study adhered to PRISMA guidelines and was registered in PROSPERO (registration number: CRD42022385362).

Results: Out of 6,030 identified studies, three met the inclusion criteria, comprising a total of 36 participants. Significant increases in sTnI levels were observed at 6 hours (SMD = 2.43; 95% CI: 0.69–4.17; P = 0.006) and at 24 hours (SMD = 2.15; 95% CI: 1.32–2.99; P < 0.00001) following eccentric exercise. At 96 hours post-exercise, sTnI levels were not significantly elevated (P = 0.07).

Conclusions: sTnI levels were elevated at 6 hours and remained elevated up to 24 hours following eccentric exercise. Given the limited number of included studies, further research is warranted to improve data availability and to provide more detailed evidence on the time course of sTnI changes.

Author Biographies

Ida Rizqa Nuraini, Maestría en Ciencias Médicas Básicas, Facultad de Medicina, Universidad Airlangga, Surabaya, Indonesia

Postgraduate student in the Master Degree Program in Basic Biomedical Science, Faculty of Medicine, Airlangga University, Surabaya, Indonesia

Priscilia Pratami Intan, Airlangga university

Postgraduate student in Master Degree in Basic Biomedical Science, Faculty of Medicine, Airlangga University, Surabaya, Indonesia

Raden Argarini, Airlangga university

Lecturer in:

- Master Degree in Basic Biomedical Science, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,

- Master Degree in Sport, Exercise, and Health Sciences, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,

- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,

Gadis Meinar Sari, Airlangga University

Lecturer in:

-Master Degree in Basic Biomedical Science, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,

-Master Degree in Sport, Exercise, and Health Sciences, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,

-Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia,

Indri Ngesti Rahayu, Hang Tuah University

Physiology Departement, Faculty of Medicine

References

Amir-Behghadami, M., & Janati, A. (2020). Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. In Emer-gency medicine journal : EMJ (Vol. 37, Issue 6, p. 387). https://doi.org/10.1136/emermed-2020-209567

Aujla, R., Zubair, M., & Patel, R. (2024). Creatine phosphokinase. StatPearls.

Avila-Quintero, S. E., Suescún-Carrero, S. H., González-Cetina, N. F., Zapata-Gil, S., & Afanador, D. F. (2024). Dosis-respuesta del entrenamiento excéntrico para prevenir lesiones en isquiotibiales en futbolistas: una revisión sistemática con metaanálisis (Dose-response of eccentric training to prevent hamstring injuries in soccer players: a systematic review with . Retos, 57, 8–17. https://doi.org/10.47197/retos.v57.104960

Bogomolova, A. P., & Katrukha, I. A. (2024). Troponins and Skeletal Muscle Pathologies. Biochemistry (Moscow), 89(12), 2083–2106. https://doi.org/10.1134/S0006297924120010

Chapman, D. W., Simpson, J. A., Iscoe, S., Robins, T., & Nosaka, K. (2013). Changes in serum fast and slow skeletal troponin I concentration following maximal eccentric contractions. Journal of Science and Medicine in Sport, 16(1), 82–85. https://doi.org/10.1016/j.jsams.2012.05.006

Chen, T. C., Liu, H. W., Russell, A., Barthel, B. L., Tseng, K. W., Huang, M. J., Chou, T. Y., & Nosaka, K. (2020). Large increases in plasma fast skeletal muscle troponin I after whole-body eccentric exercises. Journal of Science and Medicine in Sport, 23(8), 776–781. https://doi.org/10.1016/j.jsams.2020.01.011

Clerico, A., Zaninotto, M., Padoan, A., Masotti, S., Musetti, V., Prontera, C., Ndreu, R., Zucchelli, G., Pas-sino, C., Migliardi, M., & Plebani, M. (2019). Evaluation of analytical performance of immunoas-say methods for cTnI and cTnT: From theory to practice. Advances in Clinical Chemistry, 93, 239–262. https://doi.org/10.1016/bs.acc.2019.07.005

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (N. . Hillsdale (Ed.); 2nd ed.). Erlbaum Assocciates.

De Matteis, A., dell’Aquila, M., Maiese, A., Frati, P., La Russa, R., Bolino, G., & Fineschi, V. (2019). The Troponin-I fast skeletal muscle is reliable marker for the determination of vitality in the suicide hanging. Forensic Science International, 301, 284–288. https://doi.org/10.1016/j.forsciint.2019.05.055

Douglas, J., Pearson, S., Ross, A., & McGuigan, M. (2017). Eccentric Exercise: Physiological Characteris-tics and Acute Responses. Sports Medicine (Auckland, N.Z.), 47(4), 663–675. https://doi.org/10.1007/s40279-016-0624-8

Goldstein, Richard A. (2017). Skeletal Muscle Injury Biomarkers: Assay Qualification Efforts and Trans-lation to the Clinic. Toxicologic Pathology, 45(7), 943–951. https://doi.org/10.1177/0192623317738927

Hall, J. (2016). Guyton and Hall Textbook of Medical Physiology (13th ed.). Elsevier Inc.

Hody, S., Croisier, J.-L., Bury, T., Rogister, B., & Leprince, P. (2019). Eccentric Muscle Contractions: Risks and Benefits. Frontiers in Physiology, 10, 536. https://doi.org/10.3389/fphys.2019.00536

Joanna Briggs Institute. (2017). Checklist for systematic reviews and research syntheses. https://jbi.global/critical-appraisal-tools

Li, M., Gao, Q., & Yu, T. (2023). Kappa statistic considerations in evaluating inter-rater reliability bet-ween two raters: which, when and context matters. In BMC cancer (Vol. 23, Issue 1, p. 799). https://doi.org/10.1186/s12885-023-11325-z

McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia Medica, 22(3), 276–282.

Meng, Z., Wang, J., Lin, L., & Wu, C. (2024). Sensitivity analysis with iterative outlier detection for sys-tematic reviews and meta-analyses. Statistics in Medicine, 43(8), 1549–1563. https://doi.org/10.1002/sim.10008

Nair, A. S., & Borkar, N. (2024). Sensitivity and subgroup analysis in a meta-analysis - What we should know? Indian Journal of Anaesthesia, 68(10), 922–924. https://doi.org/10.4103/ija.ija_623_24

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5(1), 210. https://doi.org/10.1186/s13643-016-0384-4

Review Manager (RevMan) (5.4.1). (2020). The Cochrane Collaboration. revman.cochrane.org

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089

Sherwood, L. (2018). Fisiologi Manusia dari Sistem ke Sel. Human Physiology: From Cells to System, 1–999.

Sorichter, S., Mair, J., Koller, A., Calzolari, C., Huonker, M., Pau, B., & Puschendorf, B. (2001). Release of muscle proteins after downhill running in male and female subjects. Scandinavian Journal of Medicine and Science in Sports, 11(1), 28–32. https://doi.org/10.1034/j.1600-0838.2001.011001028.x

Sorichter, S., Mair, J., Koller, A., Gebert, W., Rama, D., Calzolari, C., Artner-Dworzak, E., & Puschendorf, B. (1997a). Skeletal troponin I as a marker of exercise-induced muscle damage. Journal of Ap-plied Physiology, 83(4), 1076–1082. https://doi.org/10.1152/jappl.1997.83.4.1076

Sorichter, S., Mair, J., Koller, A., Gebert, W., Rama, D., Calzolari, C., Artner-Dworzak, E., & Puschendorf, B. (1997b). Skeletal troponin I as a marker of exercise-induced muscle damage. Journal of Ap-plied Physiology (Bethesda, Md. : 1985), 83(4), 1076–1082. https://doi.org/10.1152/jappl.1997.83.4.1076

Sorichter, S., Mair, J., Koller, A., Müller, E., Kremser, C., Judmaier, W., Haid, C., Rama, D., Calzolari, C., & Puschendorf, B. (1997). Skeletal muscle troponin I release and magnetic resonance imaging signal intensity changes after eccentric exercise-induced skeletalmuscle injury. Clinica Chimica Acta, 262(1–2), 139–146. https://doi.org/10.1016/S0009-8981(97)06543-1

Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., Cates, C. J., Cheng, H.-Y., Corbett, M. S., Eldridge, S. M., Emberson, J. R., Hernán, M. A., Hopewell, S., Hróbjartsson, A., Junqueira, D. R., Jüni, P., Kirkham, J. J., Lasserson, T., Li, T., … Higgins, J. P. T. (2019). RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ (Clinical Research Ed.), 366, l4898. https://doi.org/10.1136/bmj.l4898

Stožer, A., Vodopivc, P., & Križančić Bombek, L. (2020). Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiological Re-search, 69(4), 565–598. https://doi.org/10.33549/physiolres.934371

Suzuki, T., Hashisdate, H., Fujisawa, Y., Yatsunami, M., Ota, T., Shimizu, N., & Betsuyaku, T. (2021). Re-liability of measurement using Image J for reach distance and movement angles in the functio-nal reach test. Journal of Physical Therapy Science, 33(2), 112–117. https://doi.org/10.1589/jpts.33.112

Sweeney, H. L., & Hammers, D. W. (2018). Muscle Contraction. Cold Spring Harbor Perspectives in Bio-logy, 10(2). https://doi.org/10.1101/cshperspect.a023200

Viechtbauer, W., & Cheung, M. W.-L. (2010). Outlier and influence diagnostics for meta-analysis. Re-search Synthesis Methods, 1(2), 112–125. https://doi.org/10.1002/jrsm.11

Wan, X., Wang, W., Liu, J., & Tong, T. (2014). Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Metho-dology, 14(1), 135. https://doi.org/10.1186/1471-2288-14-135

Warrens, M. J. (2015). Five Ways to Look at Cohen’™s Kappa. Journal of Psychology & Psychotherapy, 05(04), 8–11. https://doi.org/10.4172/2161-0487.1000197

Wesselowski, S., Lidbury, J., Saunders, A. B., Gordon, S. G., Suchodolski, J. S., & Steiner, J. M. (2023). Analytical validation, sample stability, and clinical evaluation of a new high-sensitivity cardiac troponin I immunoassay for use in dogs, with comparison to a previous ultrasensitive assay. PloS One, 18(7), e0288801. https://doi.org/10.1371/journal.pone.0288801

Willoughby, D. S., McFarlin, B., & Bois, C. (2003). Interleukin-6 expression after repeated bouts of ec-centric exercise. International Journal of Sports Medicine, 24(1), 15–21. https://doi.org/10.1055/s-2003-37197

Willoughby, D. S., Taylor, M., & Taylor, L. (2003). Glucocorticoid Receptor and Ubiquitin Eccentric Exercise. Medicine and Science in Sports and Exercise, 35(2), 2023–2031. https://doi.org/10.1249/01.MSS.0000099100.83796.77

Ying, J., Cen, X., & Yu, P. (2021). Effects of Eccentric Exercise on Skeletal Muscle Injury: From An Ul-trastructure Aspect: A Review. Physical Activity and Health, 6(1), 15–20. https://doi.org/10.5334/PAAH.67

Zafar Gondal, A., Foris, L. A., & Richards, J. R. (2022). Serum Myoglobin.

Downloads

Published

2025-06-24

How to Cite

Rizqa Nuraini, I., Pratami Intan, P., Argarini, R., Meinar Sari, G., & Ngesti Rahayu, I. (2025). Level of skeletal troponin I as a marker of skeletal muscle damage after eccentric exercise: a systematic review and meta-analysis. Retos, 70, 62–74. https://doi.org/10.47197/retos.v70.113189

Issue

Section

Theoretical systematic reviews and/or meta-analysis

Most read articles by the same author(s)