Sistema de pontuação baseado em sensor para categoria de combate em Pencak Silat

Autores

  • Nurul Ihsan Universitas Negeri Padang
  • Yulkifli Yulkifli Universitas Negeri Padang
  • Ahmaddul Hadi Universitas Negeri Padang
  • Yohandri Yohandri Universitas Negeri Padang
  • Deby Tri Mario Universitas Negeri Padang https://orcid.org/0000-0002-1945-7276
  • Novadri Ayubi Universitas Negeri Surabaya https://orcid.org/0000-0002-5196-6636
  • Aydin Karacam Bandırma Onyedi Eylül University https://orcid.org/0000-0001-6509-427X
  • Zsolt Németh University of Pécs
  • Bekir Erhan Orhan Istanbul Aydın University

DOI:

https://doi.org/10.47197/retos.v57.105906

Palavras-chave:

Technology, Sensors, Body protector, Scoringsystems, Fighting, Pencak Silat

Resumo

O sistema de pontuação que ainda se concentra nas observações do júri é um dos problemas que levam Pencak Silat a não competir nos Jogos Olímpicos, pelo que é necessária uma solução assistida por tecnologia. Esta pesquisa tem como objetivo desenvolver um sistema de pontuação baseado em tecnologia de sensores instalados em protetores corporais para a categoria combate em Pencak Silat. A pesquisa consiste no design da ferramenta, testes de viabilidade e implementação. Os componentes do equipamento instalados no escudo corporal incluem sensores flexíveis, espuma, leitor RFID, Arduino e NRF24L. Um total de 9 especialistas foram designados para avaliar a sua viabilidade, nomeadamente especialistas em informação e tecnologia (n1=3), especialistas em instrumentos (n2=3) e especialistas em Pencak Silat (n3=3). Em seguida, 120 atletas Pencak Silat do sexo masculino (n1 = 70; 18,67±3,28 anos) e feminino (n2 = 50; 18,69±3,52 anos) participaram de testes de campo. Os dados foram analisados ​​utilizando índice V de Aiken, ICC, ANOVA e teste t para amostras independentes. Os resultados mostraram que o índice V médio foi de 0,778; ANOVA e ICC também mostraram que não houve diferenças nas avaliações entre os especialistas (p>0,05) com confiabilidade muito alta (p<0,05). Em seguida, os resultados da análise do teste t para amostras independentes mostraram que não houve diferenças significativas entre os dois sistemas de avaliação (p>0,05). Concluindo, esta ferramenta pode ser utilizada como um sistema de pontuação alternativo para a categoria de combate em Pencak Silat, pelo que se espera que seja útil para o júri e para os praticantes de Pencak Silat na facilitação do seu desempenho, fornecendo avaliações objetivas e transparentes.

Palavras-chave: artes marciais, protetor corporal, tecnologia

Referências

Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings. Educational and Psychological Measurement, 45(1), 131–142.

Almanasreh, E., Moles, R., & Chen, T. F. (2019). Evaluation of methods used for estimating content validity. Research in Social and Administrative Pharmacy, 15(2), 214–221. https://doi.org/10.1016/j.sapharm.2018.03.066

Alnedral, Ihsan, N., Mario, D. T., Aldani, N., & Sari, D. P. (2023). Digital-based e-modules in Tarung Derajat martial arts learning at basic level. International Journal of Human Movement and Sports Sciences, 11(2), 306–315. https://doi.org/10.13189/saj.2023.110207

Batool, M., Jalal, A., & Kim, K. (2019). Sensors technologies for human activity analysis based on SVM optimized by PSO algorithm. 2019 International Conference on Applied and Engineering Mathematics, ICAEM 2019 - Proceedings, 145–150. https://doi.org/10.1109/ICAEM.2019.8853770

Beranek, V., Stastny, P., Novacek, V., Votapek, P., & Formanek, J. (2020). Upper limb strikes reactive forces in mix martial art athletes during ground and pound tactics. International Journal of Environmental Research and Public Health, 17(21), 1–15. https://doi.org/10.3390/ijerph17217782

Boulos, M. N. K., & Berry, G. (2012). Real-time locating systems (RTLS) in healthcare: A condensed primer. International Journal of Health Geographics, 11(25), 1–8. https://doi.org/10.1186/1476-072X-11-25

Brown, K., Toombs, M., Nasir, B., Kisely, S., Ranmuthugala, G., Brennan-Olsen, S. L., … Hides, L. (2020). How can mobile applications support suicide prevention gatekeepers in Australian Indigenous communities? Social Science and Medicine, 258(May), 113015. https://doi.org/10.1016/j.socscimed.2020.113015

Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: A systematic review. Sensors, 18(3), 1–50. https://doi.org/10.3390/s18030873

Castillo, A. B., Carmona, C. D. G., Sánchez, E. D. la cruz, & Ortega, J. P. (2018). Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time–motion analyses in soccer. European Journal of Sport Science, 18(4), 450–457. https://doi.org/10.1080/17461391.2018.1427796

Chi, E. H. (2005). Introducing wearable force sensors in martial arts. IEEE Pervasive Computing, 4(3), 47–53. https://doi.org/10.1109/MPRV.2005.67

Cho, D. W. (1981). Inter-rater reliability: Intraclass correlation coefficients. Educational and Psychological Measurement, 41(1), 223–226.

Damrah, D., Ihsan, N., Muharel, A., Komaini, A., Rifki, M. S., Sepriadi, S., & Ilham, I. (2023). A measuring tool for kick speed with dynamic targets: A digital-based instrument designed for Pencak Silat learning. Annals of Applied Sport Science, 11(4). http://aassjournal.com/article-1-1216-en.html

Dimyati, Irianto, D. P., & Lumintuarso, R. (2020). Exploring the psychological skills of Indonesian Pencak Silat Athletes at the 18th Asian games. Ido Movement for Culture, 20(2), 10–16. https://doi.org/10.14589/ido.20.2.2

Espinosa, H. G., Lee, J., & James, D. A. (2015). The inertial sensor: A base platform for wider adoption in sports science applications. Journal of Fitness Research, 4(1), 13–20.

Firdaus, K., Hartoto, S., Hariyanto, A., Subagya, I., Nikmatullaili, Mario, D. T., & Zulbahri. (2023). Evaluation of several factors that affect the learning outcomes of Physical Education. International Journal of Human Movement and Sports Sciences, 11(1), 27–36. https://doi.org/10.13189/saj.2023.110104

Firdaus, K., & Mario, D. T. (2022). Development of service sensor tools on table tennis net. Journal of Physical Education and Sport, 22(6), 1449–1456. https://doi.org/10.7752/jpes.2022.06182

Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., … Javey, A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587), 509–514. https://doi.org/10.1038/nature16521

Handayani, S. G., Myori, D. E., Yulifri, Komaini, A., & Mario, D. T. (2023). Android-based gymnastics learning media to improve handstand skills in junior high school students. Journal of Human Sport and Exercise, 18(3), 690–700. https://doi.org/10.14198/jhse.2023.183.15

Ho, H. J., Zhang, Z. X., Huang, Z., Aung, A. H., Lim, W.-Y., & Chow, A. (2020). Use of a real-time locating system for contact tracing of health care workers during the COVID-19 pandemic at an infectious disease center in Singapore: Validation study. Journal of Medical Internet Research, 22(5), e19437. https://doi.org/10.2196/19437

Huỳnh, T., Blanke, U., & Schiele, B. (2007). Scalable recognition of daily activities with wearable sensors. Int. Symp. Locat. Context, 50–67. https://doi.org/10.1007/978-3-540-75160-1_4

Ihsan, N., Hanafi, R., Sepriadi, Okilanda, A., Suwirman, & Mario, D. T. (2022). The effect of limb muscle explosive power, flexibility, and achievement motivation on sickle kick performance in Pencak Silat learning. Physical Education Theory and Methodology, 22(3), 393–400. https://doi.org/10.17309/tmfv.2022.3.14

Ihsan, N., Yulkifli, & Yohandri. (2016). Development of speed measurement system for Pencak Silat kick based on sensor technology. Journal of Physics: Conference Series, 755(1), 1–8. https://doi.org/10.1088/1742-6596/755/1/011001

Irawan, F. A., Nomi, M. T., & Peng, H.-T. (2021). Pencak Silat side kick in persinas ASAD: Biomechanics analysis. International Journal of Human Movement and Sports Sciences, 9(6), 1230–1235. https://doi.org/10.13189/saj.2021.090617

Irawan, R., Yenes, R., Mario, D. T., Komaini, A., Orhan, B. E., & Ayubi, N. (2024). Design of a sensor technology-based hand-eye coordination measuring tool: Validity and reliability. Ret, 2041, 966–973. https://doi.org/10.47197/retos.v56.103610

Ishac, K., & Eager, D. (2021). Evaluating martial arts punching kinematics using a vision and inertial sensing system. Sensors, 21(6), 1–25. https://doi.org/10.3390/s21061948

Javaid, M., Haleem, A., Rab, S., Singh, R. P., & Suman, R. (2021). Sensors for daily life: A review. Sensors International, 2(7), 100121. https://doi.org/10.1016/j.sintl.2021.100121

Kim, J., Campbell, A. S., de Ávila, B. E. F., & Wang, J. (2019). Wearable biosensors for healthcare monitoring. Nature Biotechnology, 37(4), 389–406. https://doi.org/10.1038/s41587-019-0045-y

Komaini, A., Kiram, Y., Gusril, G., Mario, D. T., Handayani, S. G., & Erianjoni, E. (2023). Fundamental movement skills in children in Mentawai Islands: Indigenous tribes in Indonesia. Physical Education Theory and Methodology, 23(4), 520–530. https://doi.org/10.17309/tmfv.2023.4.05Koo, T. K., & Li, M. Y. (2016). A Guideline of selecting and reporting Intraclass Correlation Coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Leser, R., Baca, A., & Ogris, G. (2011). Local positioning systems in (game) sports. Sensors, 11(10), 9778–9797. https://doi.org/10.3390/s111009778

Li, R. T., Kling, S. R., Salata, M. J., Cupp, S. A., Sheehan, J., & Voos, J. E. (2015). Wearable performance devices in sports medicine. Sports Health, 8(1), 74–78. https://doi.org/10.1177/1941738115616917

Liskustyawati, H., Mukholid, A., & Waluyo, W. (2019). The average needs of Pencak Silat basic technique from sparring category. International Journal of Multicultural and Multireligious Understanding, 6(4), 308–313. https://doi.org/10.18415/ijmmu.v6i4.972

Matsuwaka, S. T., & Latzka, E. W. (2019). Summer adaptive sports technology, equipment, and injuries. Sports Medicine and Arthroscopy Review, 27(2), 48–55. https://doi.org/10.1097/JSA.0000000000000231

Mendes, J. J. A., Vieira, M. E. M., Pires, M. B., & Stevan, S. L. (2016). Sensor fusion and smart sensor in sports and biomedical applications. Sensors, 16(10), 1–31. https://doi.org/10.3390/s16101569

Oh, H., Johnson, W., & Syrop, I. P. (2019). Winter adaptive sports participation, injuries, and equipment. Sports Medicine and Arthroscopy Review, 27(2), 56–59. https://doi.org/10.1097/JSA.0000000000000236

Polit, D. F., Beck, C. T., & Owen, S. V. (2007). Focus on research methods: Is the CVI an acceptable indicator of content validity ? Appraisal and recommendations. ResearchinNursing&Health, 30(4), 459–467. https://doi.org/10.1002/nur.20199

Rifki, M. S., Hanifah, R., Sepdanius, E., Komaini, A., Ilham, Fajri, H. P., & Mario, D. T. (2022). Development of a volleyball test instrument model. International Journal of Human Movement and Sports Sciences, 10(4), 807–814. https://doi.org/10.13189/saj.2022.100421

Robertson, S. J., Burnett, A. F., & Cochrane, J. (2013). Tests examining skill outcomes in sport: A systematic review of measurement properties and feasibility. Sports Medicine, 44(4), 501–518. https://doi.org/10.1007/s40279-013-0131-0

Sireci, S. G., & Faulkner-Bond, M. (2014). Validity evidence based on test content. Psicothema.

Umar, U., Alnedral, A., Ihsan, N., Mario, D. T., & Mardesia, P. (2023). The effect of learning methods and motor skills on the learning outcomes of basic techniques in volleyball. Journal of Physical Education and Sport, 23(9), 2453–2460. https://doi.org/10.7752/jpes.2023.09282

Usra, M., Lesmana, I. B., Octara, K., Bayu, W. I., Badau, A., Ishak, A., & Setiawan, E. (2024). Augmented reality training on combat sport: Improving the quality of physical fitness and technical performance of young athletes. Retos, 54, 835–843. https://doi.org/10.47197/retos.v54.103743

Wang, X., Zhi, C., & Wang, Q. (2017). Research on Wushu actions and techniques based on a biomechanical sensor system. International Journal Bioautomation, 21(2), 199–206.

Wang, Z. L., Chen, J., & Lin, L. (2015). Progress in triboelectric nanogenertors as new energy technology and self-powered sensors. Energy and Environmental Science, 8(8), 2250–2282. https://doi.org/10.1039/c5ee01532d

Welis, W., Effendi, R., Ilham, I., Mario, D. T., Bafirman, B., & Ihsan, N. (2024). Protein-based soy flour supplementation to support the effects of weight training on muscle hypertrophy. Retos, 51(1), 923–929. https://doi.org/10.47197/retos.v51.99162

Welis, W., Yendrizal, Darni, & Mario, D. T. (2023). Physical fitness of students in Indonesian during the COVID-19 period: Physical activity, body mass index, and socioeconomic status. Physical Activity Review, 11(1), 77–87. https://doi.org/10.16926/par.2023.11.10

Worsey, M. T. O., Espinosa, H. G., Shepherd, J. B., & Thiel, D. V. (2019). Inertial sensors for performance analysis in combat sports: A systematic review. Sports, 7(28), 1–19. https://doi.org/10.3390/sports7010028

Worsey, M. T. O., Pahl, R., Thiel, D. V., & Milburn, P. D. (2018). A comparison of computational methods to determine intrastroke velocity in swimming using IMUs. IEEE Sensors Letters, 2(1), 1–4. https://doi.org/10.1109/LSENS.2018.2804893

Wu, H., Dyson, M., & Nazarpour, K. (2021). Arduino-based myoelectric control: Towards longitudinal study of prosthesis use. Sensors, 21(3), 1–13. https://doi.org/10.3390/s21030763

Wynd, C. A., Schmidt, B., & Schaefer, M. A. (2003). Two quantitative approaches for estimating content validity. Western Journal of Nursing Research, 25(5), 508–518. https://doi.org/10.1177/0193945903252998

Yaakop, N., Koh, D., & Yasin, M. (2023). A content validation of focus group discussions based on need analysis in a physical education training module for primary school teachers. Retos, 50, 1115–1122. https://doi.org/10.47197/retos.v50.100191

Zhang, S., Ang, M. H., Xiao, W., & Tham, C. K. (2009). Detection of activities by wireless sensors for daily life surveillance: Eating and drinking. Sensors, 9(3), 1499–1517. https://doi.org/10.3390/s90301499

Downloads

Publicado

2024-08-03

Como Citar

Ihsan, N., Yulkifli, Y., Hadi, A., Yohandri, Y., Mario, D. T., Ayubi, N., … Orhan, B. E. (2024). Sistema de pontuação baseado em sensor para categoria de combate em Pencak Silat. Retos, 57, 684–691. https://doi.org/10.47197/retos.v57.105906

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.