Impactos diferenciais do exercício físico de alta e baixa intensidade na atividade das ondas cerebrais e na conectividade funcional em atletas profissionais: uma revisão sistemática

Autores

  • Ah Yusuf Airlangga University
  • Moh Yasin Department of Physics, Faculty of Science and Technology, Universitas Airlangga (Indonesia)
  • Rizki Fitryasari P K Airlangga University
  • Ronal Surya Aditya Universitas Negeri Malang
  • Fitriana Kurniasari Solikhah Poltekkes Kemenkes Malang
  • Siti Kotijah Bina Sehat PPNI
  • Muhammad Putra Ramadhan Universitas Negeri Malang
  • Qory Tiffani Rahmatika Universitas Negeri Malang
  • Achmad Masfi Universitas Negeri Malang
  • Andi Hamim Zaidan Airlangga University
  • Winarno Winarno Airlangga University
  • Deny Arifianto Airlangga University
  • Novita Verayanti Manalu Airlangga University
  • Ehtesham Ahmed Shariff King Saud University
  • Ahmed Azharuddin King Saud University
  • Daifallah M Alrazeeni King Saud University

DOI:

https://doi.org/10.47197/retos.v60.108998

Palavras-chave:

Brain ,   Emotions ,   Physical Fitness ,  Cognition ,  Athletes ,  Self-Control

Resumo

Introdução: Esta revisão sistemática explora os impactos diferenciais do exercício físico de alta e baixa intensidade na atividade das ondas cerebrais e na conectividade funcional em atletas profissionais. O estudo visa elucidar como diferentes intensidades de exercício influenciam as respostas cognitivas e emocionais, a conectividade cerebral e a saúde mental geral. Além disso, examina os possíveis efeitos sinérgicos da integração do treino de neurofeedback com o exercício físico. Método: Foi realizada uma pesquisa bibliográfica exaustiva em bases de dados como a PubMed, Scopus e Google Scholar. As palavras-chave incluíam “exercício de alta intensidade”, “exercício de baixa intensidade”, “atividade das ondas cerebrais”, “conectividade funcional”, “atletas profissionais” e “desempenho cognitivo”. Os critérios de inclusão foram estudos publicados em revistas especializadas que envolveram atletas profissionais e examinaram o impacto da intensidade do exercício na atividade das ondas cerebrais e na conectividade funcional. A extração de dados centrou-se no desenho do estudo, no tamanho da amostra, na intensidade do exercício, nas técnicas de neuroimagiologia, na atividade das ondas cerebrais e nos resultados de conectividade funcional. Resultados: Verificou-se que o exercício físico de alta intensidade induz alterações significativas na conectividade funcional nas redes de afeto e recompensa, melhora o humor e melhora o desempenho cognitivo através do aumento da coerência e sincronização das ondas cerebrais. O exercício de baixa intensidade melhorou principalmente o processamento cognitivo e atencional, aumentando a conectividade funcional em estado de repouso na rede frontoparietal. Foi demonstrado que o treino de neurofeedback melhora a atividade das ondas cerebrais, reduz os níveis de stress e aumenta o autocontrolo sobre os fatores fisiológicos. A abordagem combinada de neurofeedback e exercício físico demonstrou potencial para otimizar o desempenho físico e mental em atletas. Conclusão: Os resultados indicam que o exercício de alta intensidade leva a alterações significativas e prolongadas na conectividade cerebral e no desempenho cognitivo, enquanto o exercício de baixa intensidade beneficia o processamento cognitivo e atencional. A discussão apresenta a teoria da sinergia entre o neurofeedback e o condicionamento físico, que postula que a integração do neurofeedback com o exercício físico pode levar a melhorias ótimas tanto no condicionamento físico como na saúde mental. Esta abordagem combinada sugere uma estratégia promissora para melhorar o desempenho desportivo global e o bem-estar mental. A investigação futura deverá centrar-se em medidas padronizadas e estudos a longo prazo para validar ainda mais estes resultados e explorar os mecanismos neurofisiológicos subjacentes.

Palavras-chave: Cérebro, Emoções, Aptidão Física, Cognição, Atletas, Autocontrolo

Biografias Autor

Moh Yasin, Department of Physics, Faculty of Science and Technology, Universitas Airlangga (Indonesia)

 

 

Rizki Fitryasari P K, Airlangga University

 

 

Ronal Surya Aditya, Universitas Negeri Malang

 

 

Fitriana Kurniasari Solikhah, Poltekkes Kemenkes Malang

 

 

Siti Kotijah, Bina Sehat PPNI

 

 

Muhammad Putra Ramadhan, Universitas Negeri Malang

 

 

Qory Tiffani Rahmatika, Universitas Negeri Malang

 

 

Achmad Masfi, Universitas Negeri Malang

 

 

Andi Hamim Zaidan, Airlangga University

 

 

Winarno Winarno, Airlangga University

 

 

Deny Arifianto, Airlangga University

 

 

Novita Verayanti Manalu, Airlangga University

 

 

Ehtesham Ahmed Shariff, King Saud University

 

 

Ahmed Azharuddin, King Saud University

 

 

Daifallah M Alrazeeni, King Saud University

 

 

Referências

Adamek, J. F., Malani, R., Petruzzello, S. J., & Gothe, N. P. (2023). The Effect Of Affect During High Intensity Interval Training On Executive Function. In Medicine and Science in Sports and Exercise (Vol. 55, Issue 9S, p. 692). https://doi.org/10.1249/01.mss.0000986344.23185.3b

Askovic, M., Soh, N., Elhindi, J., & Harris, A. W. F. (2023). Neurofeedback for post-traumatic stress disorder: systematic review and meta-analysis of clinical and neurophysiological outcomes. European Journal of Psychotraumatology, 14. https://doi.org/10.1080/20008066.2023.2257435

Benarroch, E. E. (2022). What Muscle Signals Mediate the Beneficial Effects of Exercise on Cognition? Neurology, 99, 298–304. https://doi.org/10.1212/WNL.0000000000201049

Cefis, M., Chaney, R., Wirtz, J., Méloux, A., Quirié, A., Leger, C., Prigent-Tessier, A., & Garnier, P. (2023). Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Frontiers in Molecular Neuroscience, 16. https://doi.org/10.3389/fnmol.2023.1275924

Chen, C., & Nakagawa, S. (2023). Recent advances in the study of the neurobiological mechanisms behind the effects of physical activity on mood, resilience and emotional disorders. Advances in Clinical and Experimental Medicine. https://doi.org/10.17219/acem/171565

Consorti, A., Consorti, A., Marco, I. Di, & Sansevero, G. (2021). Physical Exercise Modulates Brain Physiology Through a Network of Long- and Short-Range Cellular Interactions. Frontiers in Molecular Neuroscience, 14, 710303. https://doi.org/10.3389/FNMOL.2021.710303

Contreras-Osorio, F., Ramirez-Campillo, R., Cerda-Vega, E., Campos-Jara, R., Martínez-Salazar, C., Reigal, R. E., Morales-Sánchez, V., Sierralta, S. A., & Campos-Jara, C. (2022). Effects of Physical Exercise on Executive Function in Adults with Depression: A Systematic Review and Meta-Analysis Protocol. Sustainability, 14(22), 15158. https://doi.org/10.3390/su142215158

Dowllah, I. M., López-Alvarenga, J. C., Maestre, G. E., Karabulut, U. S., Lehker, M., & Karabulut, M. (2023). Relationship Between Cognitive Performance, Physical Activity, and Socio-Demographic/Individual Characteristics Among Aging Americans. Journal of Alzheimer’s Disease, 1–13. https://doi.org/10.3233/jad-221151

Ezure, S., Yamanaka, K., & Waki, H. (2023). Functional connectivity in central nucleus of amygdala, paraventricular hypothalamus, and nucleus tractus solitarii circuits during high-intensity endurance treadmill exercise in rats. The Journal of Physical Fitness and Sports Medicine, 12(3), 69–75. https://doi.org/10.7600/jpfsm.12.69

Festa, F., Medori, S., & Macri, M. (2023). Move Your Body, Boost Your Brain: The Positive Impact of Physical Activity on Cognition across All Age Groups. Advances in Cardiovascular Diseases, 11(6), 1765. https://doi.org/10.3390/biomedicines11061765

Gallo, G., Geda, E., Codella, R., Faelli, E., Panasci, M., Ranieri, L. E., Pollastri, L., Brighenti, S., Molino, L., Riba, U., Luzi, L., Ruggeri, P., & Filipas, L. (2022). Effects of Bilateral Dorsolateral Prefrontal Cortex High-Definition Transcranial Direct-Current Stimulation on Physiological and Performance Responses at Severe-Intensity Exercise Domain in Elite Road Cyclists. International Journal of Sports Physiology and Performance, 17(7), 1–9. https://doi.org/10.1123/ijspp.2022-0019

Goulet, N., McCormick, J. J., McManus, M. K., King, K. E., & Kenny, G. P. (2023). Acute Aerobic Exercise Increases Brain-Derived Neurotrophic Factor In Peripheral Blood Mononuclear Cells Independently Of Exercise Intensity. In Medicine and Science in Sports and Exercise (Vol. 55, Issue 9S, p. 478). https://doi.org/10.1249/01.mss.0000984272.88068.c7

Han, Y. M. Y., Chan, M. M. Y., Ahorsu, D. K., & Tsang, H. W. H. (2023). The neurobiological effects of mind–body exercise: a systematic review and meta-analysis of neuroimaging studies. Dental Science Reports, 13(1). https://doi.org/10.1038/s41598-023-37309-4

Hosang, L., Mouchlianitis, E., Guérin, S. M. R., & Karageorghis, C. I. (2022). Effects of exercise on electroencephalography-recorded neural oscillations: a systematic review. International Review of Sport and Exercise Psychology, 1–54. https://doi.org/10.1080/1750984x.2022.2103841

Huang, W., Wu, W., Lucas, M. V, Huang, H., Wen, Z., & Li, Y. (2023). Neurofeedback Training With an Electroencephalogram-Based Brain-Computer Interface Enhances Emotion Regulation. IEEE Transactions on Affective Computing, 14, 998–1011. https://doi.org/10.1109/TAFFC.2021.3134183

Izutsu, N., Yanagisawa, T., Fukuma, R., & Kishima, H. (2023). Magnetoencephalographic neurofeedback training decreases β-low-γ phase-amplitude coupling of the motor cortex of healthy adults: a double-blinded randomized crossover feasibility study. Journal of Neural Engineering, 20(3), 36005. https://doi.org/10.1088/1741-2552/acd0d6

Karen, D., Dorian, G., Arnaud, H., & Thibault, G. (2023). High-intensity physical activity enhances cognitive decision processes. In bioRxiv. https://doi.org/10.1101/2023.02.14.528466

Khandekar, P., Shenoy, S., & Sathe, A. (2022). Prefrontal cortex hemodynamic response to acute high intensity intermittent exercise during executive function processing. Journal of General Psychology, 150(3), 295–322. https://doi.org/10.1080/00221309.2022.2048785

Kimura, D., Hosokawa, T., Ujikawa, T., & Ito, T. (2022). Effects of different exercise intensities on prefrontal activity during a dual task. Dental Science Reports, 12(1). https://doi.org/10.1038/s41598-022-17172-5

Ko, Y., Kim, S. M., Kang, K. D., & Han, D. H. (2023). Changes in Functional Connectivity Between Default Mode Network and Attention Network in Response to Changes in Aerobic Exercise Intensity. Psychiatry Investigation, 20(1), 27–34. https://doi.org/10.30773/pi.2022.0245

Lee, E. D., Hong, J. K., Choi, H., & Yoon, I.-Y. (2024). Modest Effects of Neurofeedback-Assisted Meditation Using a Wearable Device on Stress Reduction: A Randomized, Double-Blind, and Controlled Study. Journal of Korean Medical Science, 39. https://doi.org/10.3346/jkms.2024.39.e94

Leger, C., Quirié, A., Méloux, A., Fontanier, E., Chaney, R., Basset, C., Lemaire, S., Garnier, P., & Prigent-Tessier, A. (2024). Impact of Exercise Intensity on Cerebral BDNF Levels: Role of FNDC5/Irisin. International Journal of Molecular Sciences, 25. https://doi.org/10.3390/ijms25021213

Liu, B., Yu, J., Wu, J., Qin, Y., Xiao, W. R., & Ren, Z. (2023). Runners with better cardiorespiratory fitness had higher prefrontal cortex activity during both single and exercise-executive function dual tasks: an fNIRS study. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1246741

Lohaus, M., Maurer, A., Upadhyay, N., Daamen, M., Bodensohn, L., Werkhausen, J., Manunzio, C., Manunzio, U., Radbruch, A., Attenberger, U., & Boecker, H. (2024). Differential modulation of resting-state functional connectivity between amygdala and precuneus after acute physical exertion of varying intensity: indications for a role in affective regulation. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2024.1349477

Lu, Y., Bu, F., Wang, F., Liu, L., Zhang, S., Wang, G., & Hu, X. (2023). Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Translational Neurodegeneration, 12(1). https://doi.org/10.1186/s40035-023-00341-5

Lunina, N. V, & Koryagina, Y. V. (2023). [Impact of neurobiofeedback by beta rhythm of the brain on the functional state of cardiovascular system of athletes with different motor activity]. Voprosy Kurortologii Fizioterapii i Lechebnoĭ Fizicheskoĭ Kultury, 100 2(2), 45–51. https://doi.org/10.17116/kurort202310002145

Mahmood, D., Nisar, H., & Tsai, C. (2024). Exploring the efficacy of neurofeedback training in modulating alpha-frequency band and its effects on functional connectivity and band power. In Expert systems with applications (Vol. 254, p. 124415). https://doi.org/10.1016/j.eswa.2024.124415

Monany, D. R., Lebon, F., & Papaxanthis, C. (2023). Optimizing the Benefits of Mental Practice on Motor Acquisition and Consolidation with Moderate-Intensity Exercise. In Peer community journal (Vol. 3). https://doi.org/10.24072/pcjournal.296

Niu, X., Chi, P., Song, J., Pang, Y., Wu, Q. W. Z., Liu, Y., & Chi, A. (2022). Effects of Sleep Deprivation on Functional Connectivity of Brain Regions after High-Intensity Exercise in Adolescents. Sustainability, 14(23), 16175. https://doi.org/10.3390/su142316175

Olson, R. L., & Cleveland, D. J. (2023). Effects of Low-Intensity Aerobic Exercise on Neurophysiological and Behavioral Correlates of Cognitive Function. Behavioral Sciences, 13(5), 401. https://doi.org/10.3390/bs13050401

Petré, H., Ovendal, A. H., Westblad, N., Siethoff, L. ten, Rosdahl, H., & Psilander, N. (2023). Effect of the Intrasession Exercise Order of Flywheel Resistance and High-Intensity Interval Training on Maximal Strength and Power Performance in Elite Team-Sport Athletes. Journal of Strength and Conditioning Research. https://doi.org/10.1519/JSC.0000000000004556

Presti, S. Lo, Gianelli, C., & Canessa, N. (2023). Cognition, body, and mind: A three‐in‐one coordinate‐based fMRI meta‐analysis on cognitive, physical, and meditative trainings. Human Brain Mapping, 44(9), 3795–3814. https://doi.org/10.1002/hbm.26312

Raji, C., Meysami, S., Hashemi, S., Garg, S., Ahmed, G., Niotis, K., & Merrill, D. A. (2023). Exercise-Related Physical Activity Relates to Brain Volumes in 10,125 Individuals. Journal of Alzheimer’s Disease. https://doi.org/10.3233/jad-230740

Rivas-Campo, Y., Aibar-Almazán, A., Rodríguez-López, C. E., Afanador-Restrepo, D. F., García-Garro, P. A., Castellote-Caballero, Y., Achalandabaso-Ochoa, A., & Hita-Contreras, F. (2023). Enhancing Cognition in Older Adults with Mild Cognitive Impairment through High-Intensity Functional Training: A Single-Blind Randomized Controlled Trial. Stomatology, 12(12), 4049. https://doi.org/10.3390/jcm12124049

Schleh, M. W., Ahn, C., Ryan, B. J., Chugh, O. K., Luker, A. T., Luker, K. E., Gillen, J. B., Ludzki, A. C., Pelt, D. W. Van, Pitchford, L. M., Rode, T., Howton, S. M., Burant, C. F., & Horowitz, J. F. (2023). Both moderate- and high-intensity exercise training increase intramyocellular lipid droplet abundance and modify myocellular distribution in adults with obesity. American Journal of Physiology-Endocrinology and Metabolism. https://doi.org/10.1152/ajpendo.00093.2023

Schmidt, K., Kowalski, A., Schweda, A., Dörrie, N., Skoda, E.-M., Bäuerle, A., & Teufel, M. (2024). Evaluation of a manualised neurofeedback training in psychosomatic-psychotherapeutic outpatient treatment (Neuro-pp-out): study protocol for a clinical mixed-methods pilot study. BMJ Open, 14. https://doi.org/10.1136/bmjopen-2023-079098

Schultz, C. A., & Herbert, J. (2022). Review of the Evidence for Neurofeedback Training for Children and Adolescents Who Have Experienced Traumatic Events. Trauma, Violence, & Abuse, 15248380221134296–15248380221134296. https://doi.org/10.1177/15248380221134295

Stults‐Kolehmainen, M., Conlee, M. N., Morse, A. R., Wegner, S., Hensley, J. P., & Kilpatrick, M. W. (2023). Impact Of Exercise Intensity On Motivation State Before And After Aerobic Exercise. In Medicine and Science in Sports and Exercise (Vol. 55, Issue 9S, pp. 787–788). https://doi.org/10.1249/01.mss.0000987256.01877.66

Tarmizi, F. I. M., & Othman, E. A. (2023). Benefits of Physical Exercise on Working Memory Performance: A Systematic Review of Functional MRI Studies. In Journal of Cognitive Sciences and Human Development (Vol. 9, Issue 2, pp. 101–116). https://doi.org/10.33736/jcshd.5973.2023

Teo, W.-P., Tan, C. X., Goodwill, A. M., Mohammad, S., Ang, Y.-X., & Latella, C. (2023). Brain activation associated with low- and high-intensity concentric versus eccentric isokinetic contractions of the biceps brachii: An fNIRS study. Scandinavian Journal of Medicine & Science in Sports. https://doi.org/10.1111/sms.14499

Tyler, J., Podaras, M., Richardson, B. J., Roeder, N. M., Hammond, N., Hamilton, J., Blum, K., Gold, M. S., Baron, D. A., & Thanos, P. K. (2023). High intensity interval training exercise increases dopamine D2 levels and modulates brain dopamine signaling. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2023.1257629

Wang, K. P., Elbanna, H., & Schack, T. (2023). A new EEG neurofeedback training approach in sports: the effects function-specific instruction of Mu rhythm and visuomotor skill performance. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2023.1273186

Wang, X., Soh, K. G., Deng, N., Liu, X., Zhao, Y., & Akbar, S. (2023). Effects of high-intensity functional training on physical fitness and sport-specific performance among the athletes: A systematic review with meta-analysis. PLOS ONE, 18. https://doi.org/10.1371/journal.pone.0295531

Wang, Y., & Ashokan, K. (2021). Physical Exercise: An Overview of Benefits From Psychological Level to Genetics and Beyond. Frontiers in Physiology, 12, 731858. https://doi.org/10.3389/FPHYS.2021.731858

Weston, M. E., Barker, A. R., Tomlinson, O. W., Coombes, J. S., Bailey, T. G., & Bond, B. (2022). The effect of exercise intensity and cardiorespiratory fitness on the kinetic response of middle cerebral artery blood velocity during exercise in healthy adults. Journal of Applied Physiology, 133(1), 214–222. https://doi.org/10.1152/japplphysiol.00862.2021

Wu, J.-H., Chueh, T. Y., Yu, C.-L., Wang, K. P., Kao, S. C., Gentili, R. J., Hatfield, B. D., & Hung, T. M. (2023). Effect of a single session of sensorimotor rhythm neurofeedback training on the putting performance of professional golfers. Scandinavian Journal of Medicine & Science in Sports. https://doi.org/10.1111/sms.14540

Xu, J., Zhang, Z., Yu, J., Li, G., Cui, J., Qi, H., Zhang, M., Li, M., Yang, H., Wang, H., Min, H.-K., Xu, F., Xu, X., Zhu, C., Xiao, Y., & Zhang, Y. (2024). Functional near-infrared spectroscopy-based neurofeedback training regulates time-on-task effects and enhances sustained cognitive performance. In Cerebral cortex (Vol. 34, Issue 6). https://doi.org/10.1093/cercor/bhae259

Yao, Y., Tang, Y., Tang, Y., Tang, Y., Tang, Y., Tang, Y., Tang, Y., Tang, Y., Tang, Y., Tang, Y., & Tang, Y. (2024). High-intensity interval training ameliorates postnatal immune activation-induced mood disorders through KDM6B-regulated glial activation. In Brain Behavior and Immunity. https://doi.org/10.1016/j.bbi.2024.06.006

Zhu, F., Zhu, X., Bi, X., Kuang, D., Liu, B., Zhou, J., Yang, Y., & Ren, Y. (2023). Comparative effectiveness of various physical exercise interventions on executive functions and related symptoms in children and adolescents with attention deficit hyperactivity disorder: A systematic review and network meta-analysis. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1133727

Downloads

Publicado

2024-11-01

Como Citar

Yusuf, A., Yasin, M. ., P K, R. F. ., Aditya, R. S., Solikhah, F. K. ., Kotijah, S., … Alrazeeni, D. M. . (2024). Impactos diferenciais do exercício físico de alta e baixa intensidade na atividade das ondas cerebrais e na conectividade funcional em atletas profissionais: uma revisão sistemática. Retos, 60, 1356–1364. https://doi.org/10.47197/retos.v60.108998

Edição

Secção

Revisões teóricas sistemáticas e/ou metanálises