Um estudo longitudinal de 12 meses de treino aeróbio vs. anaeróbio: efeitos na composição corporal e no desempenho atlético
DOI:
https://doi.org/10.47197/retos.v68.110454Palavras-chave:
Treino aeróbico, treino anaeróbico, desempenho atlético, composição corporal, adaptação a longo prazo.Resumo
Introdução: O treino aeróbio e anaeróbio induz adaptações fisiológicas específicas, mas os seus efeitos comparativos a longo prazo ainda não estão totalmente esclarecidos.
Objectivo: Avaliar e comparar os efeitos de 12 meses de treino aeróbico e anaeróbico na composição corporal, aptidão cardiovascular e desempenho atlético em adultos saudáveis com idades compreendidas entre os 18 e os 35 anos.
Metodologia: Ensaio clínico randomizado (n = 120; 60 homens, 60 mulheres), com alocação num grupo de treino aeróbio (TA) ou anaeróbio (TAR). As avaliações foram realizadas aos 0, 3, 6 e 12 meses, incluindo a composição corporal (DXA), VO₂ máx e métricas de desempenho (força, potência, resistência). 108 participantes concluíram o estudo. Resultados: O grupo AT reduziu significativamente a percentagem de gordura corporal (-4,6%, p < 0,001) e melhorou o VO₂ máx (+6,8 mL·kg⁻¹·min⁻¹, p < 0,001), refletindo melhorias cardiovasculares e na perda de gordura. O grupo ANT apresentou maiores aumentos na massa magra (+3,2 kg, p < 0,001), na força muscular (+22,7 kg no supino, p < 0,001) e na potência anaeróbia (+423 W, p < 0,001). Ambos os grupos melhoraram de acordo com a especificidade do treino.
Discussão: Os resultados confirmam adaptações divergentes e orientadas para os objetivos: o treino aeróbico otimiza a redução de gordura e a capacidade cardiovascular, enquanto o treino anaeróbico favorece a força, a potência e a massa muscular. Conclusões: O treino aeróbio e anaeróbio oferece benefícios distintos e complementares. A programação deve ser adaptada aos objectivos individuais para maximizar os resultados a longo prazo.
Referências
Adams, M. M., Hatch, S. A., Winsor, E. G., & Parmelee, C. (2022). Development of a Standard Push-up Scale for College-Aged Females. International journal of exercise science, 15(4), 820–833. https://doi.org/10.70252/XIJI4089
Ahsan, M., Ali, M. F., & Al-Zahrani, A. (2023). Impact of a pre-competition aerobic and anaerobic training on the maximal aerobic capacity, anaerobic power, dynamic balance, and visual-motor coordi-nation of rugby and soccer players. Physical Activity Review, 11(2). https://doi.org/10.16926/par.2023.11.25
Anderson, L., & Drust, B. (2023). Aerobic and anaerobic training. In: Williams, M. Ford, P., R. & Drust, B. (Eds). Science and Soccer Developing Elite Perfomers, 4th ed, 34-51. Routledge.
Asahara, H., Inui, M., & Lotz, M. K. (2017). Tendons and Ligaments: Connecting Developmental Biology to Musculoskeletal Disease Pathogenesis. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 32(9), 1773–1782. https://doi.org/10.1002/jbmr.3199
Bassett, D. R., Jr, & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determi-nants of endurance performance. Medicine and science in sports and exercise, 32(1), 70–84. https://doi.org/10.1097/00005768-200001000-00012
Barbosa, R. R., Melo, R. J. P., de Brito Gomes, J. L., Guimarães, F. J. D. S. P., & da Cunha Costa, M. (2024). Effect of aerobic training volume on VO2max and time trial of runners: A systematic re-view. Journal of Human Sport and Exercise, 19(4), 1139-1150. https://doi.org/10.55860/90apnb26
Bar-Or, O. (1987). The Wingate Anaerobic Test: An update on methodology, reliability, and validi-ty. Sports Medicine, 4(6), 381–394. https://doi.org/10.2165/00007256-198704060-00001
Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle. Sports Medicine, 43(5), 313-338. https://doi.org/10.1007/s40279-013-0029-x
Bucher Sandbakk, S., Walther, J., Solli, G. S., Tønnessen, E., & Haugen, T. (2023). Training Quality-What Is It and How Can We Improve It?. International journal of sports physiology and perfor-mance, 18(5), 557–560. https://doi.org/10.1123/ijspp.2022-0484
Benedetti, M. G., Furlini, G., Zati, A., & Letizia Mauro, G. (2018). The Effectiveness of Physical Exercise on Bone Density in Osteoporotic Patients. BioMed research international, 2018, 4840531. https://doi.org/10.1155/2018/4840531
Coffey, V. G., & Hawley, J. A. (2007). The molecular bases of training adaptation. Sports Medicine, 37(9), 737–763. https://doi.org/10.2165/00007256-200737090-00001
de Barcelos, G. T., Heberle, I., Coneglian, J. C., Vieira, B. A., Delevatti, R. S., & Gerage, A. M. (2022). Effects of Aerobic Training Progression on Blood Pressure in Individuals with Hypertension: A System-atic Review With Meta-Analysis and Meta-Regression. Frontiers in sports and active living, 4, 719063. https://doi.org/10.3389/fspor.2022.719063
D’Isanto, T., D’Elia, F., Raiola, G., & Altavilla, G. (2019). Assessment of sport performance: theoretical aspects and practical indications. Sport Mont, 17(1), 79-82. doi: 10.26773/smj.190214
Dolci, F., Kilding, A. E., Chivers, P., Piggott, B., & Hart, N. H. (2020). High-intensity interval training shock microcycle for enhancing sport performance: A brief review. Journal of Strength and Condi-tioning Research, 34(4), 1188-1196. https://doi.org/10.1519/JSC.0000000000003405
Erdem Eyuboglu, F. (2023). Circulatory System and Its Adaptation to Exercise. In: Kaya Utlu, D. (Eds) Functional Exercise Anatomy and Physiology for Physiotherapists (pp. 447-471). Spring-er Cham. https://doi.org/10.1007/978-3-031-27184-7_22
Ferguson, R. A., Mitchell, E. A., Taylor, C. W., Bishop, D. J., & Christiansen, D. (2021). Blood-flow-restricted exercise: Strategies for enhancing muscle adaptation and performance in the endur-ance-trained athlete. Experimental physiology, 106(4), 837–860. https://doi.org/10.1113/EP089280
Franchini E. (2020). High-Intensity Interval Training Prescription for Combat-Sport Ath-letes. International journal of sports physiology and performance, 15(6), 767–776. https://doi.org/10.1123/ijspp.2020-0289
Franklin, B. A., Eijsvogels, T. M. H., Pandey, A., Quindry, J., & Toth, P. P. (2022). Physical activity, cardi-orespiratory fitness, and cardiovascular health: A clinical practice statement of the American Society for Preventive Cardiology Part II: Physical activity, cardiorespiratory fitness, minimum and goal intensities for exercise training, prescriptive methods, and special patient popula-tions. American journal of preventive cardiology, 12, 100425. https://doi.org/10.1016/j.ajpc.2022.100425
Forster, J. W. D., Uthoff, A. M., Rumpf, M. C., & Cronin, J. B. (2022). Pro-agility unpacked: Variability, comparability and diagnostic value. International Journal of Sports Science & Coaching, 17(5), 1225-1240. https://doi.org/10.1177/17479541211069338
Furrer, R., Hawley, J. A., & Handschin, C. (2023). The molecular athlete: exercise physiology from mechanisms to medals. Physiological reviews, 103(3), 1693–1787. https://doi.org/10.1152/physrev.00017.2022
García-Flores, I., Hernández-Lepe, M. A., Aburto-Corona, J. A., Ortiz-Ortiz, M., Naranjo-Orellana, J., & Gómez-Miranda, L. M. (2023). Effect of high intensity Interval training on the autonomic nerv-ous system. Retos, 47, 847–852. https://doi.org/10.47197/retos.v47.91199
Gibala, M. J., Little, J. P., van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., Tarnopolsky, M. A., &
Gillen, Z. M., Wyatt, F. B., Winchester, J. B., Smith, D. A., & Ghetia, V. (2016). The Relationship Between Aerobic and Anaerobic Performance in Recreational Runners. International journal of exercise science, 9(5), 625–634.
Hawley, J. A. (2002). Adaptations of skeletal muscle to prolonged intense endurance training. Clinical and Experimental Pharmacology and Physiology, 29 (3), 218–222.
Hawley, J. A. (2009). Molecular responses to strength and endurance training: Are they incompati-ble? Applied Physiology, Nutrition, and Metabolism, 34(3), 355–361. https://doi.org/10.1139/H09-023
Holloszy, J. O., & Coyle, E. F. (1984). Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. Journal of Applied Physiology, 56(4), 831–838.
Hughes, D. C., Ellefsen, S., & Baar, K. (2018). Adaptations to Endurance and Strength Training. Cold Spring Harbor perspectives in medicine, 8(6), a029769. https://doi.org/10.1101/cshperspect.a029769
Isath, A., Koziol, K. J., Martinez, M. W., Garber, C. E., Martinez, M. N., Emery, M. S., Baggish, A. L., Naidu, S. S., Lavie, C. J., Arena, R., & Krittanawong, C. (2023). Exercise and cardiovascular health: A state-of-the-art review. Progress in cardiovascular diseases, 79, 44–52. https://doi.org/10.1016/j.pcad.2023.04.008
Jatmiko, T., Kusnanik, N. W., & Sidik, R. M. (2024). High-Intensity Interval Training (HIIT) Progressive Sprint-Release Model: Its Effect in Increasing Speed, Aerobic Capacity, and Anaerobic Capacity of Athletes. Retos, 57, 318–323. https://doi.org/10.47197/retos.v57.104857
Jones, A. M., & Carter, H. (2000). The effect of endurance training on parameters of aerobic fitness. Sports Medicine, 29(6), 373-386. https://doi.org/10.2165/00007256-200029060-00001
Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: the physiology of champions. The Journal of physiology, 586(1), 35–44. https://doi.org/10.1113/jphysiol.2007.143834
Kabir, Md. S., Yadav, S., Biswas, S., Pradhan, A., & Geantă, V. A. (2025). Aerobic vs anaerobic exercise on body composition and hormonal adaptations in athletes and non-athletes: A Randomized con-trolled trial. Journal of Coaching and Sports Science, 4(1), 52-65. https://doi.org/10.58524/jcss.v4i1.553
Kamandulis, S., Dudėnienė, L., Snieckus, A., Kniubaite, A., Mickevicius, M., Lukonaitiene, I., Venckunas, T., Stasiule, L., & Stasiulis, A. (2024). Impact of Anaerobic Exercise Integrated Into Regular Training on Experienced Judo Athletes: Running Vs. Repetitive Throws. Journal of strength and condi-tioning research, 38(9), e489–e495. https://doi.org/10.1519/JSC.0000000000004829
Ketelhut, S., & Ketelhut, R. G. (2020). Type of Exercise Training and Training Methods. Advances in ex-perimental medicine and biology, 1228, 25–43. https://doi.org/10.1007/978-981-15-1792-1_2
Kraemer, W. J., Ratamess, N. A., & Newman, T. (2024). Developing the Athlete: An Applied Sport Science Roadmap for Optimizing Performance. Human Kinetics.
Kraemer A. (2020). An Overview of the Beneficial Effects of Exercise on Health and Perfor-mance. Advances in experimental medicine and biology, 1228, 3–22. https://doi.org/10.1007/978-981-15-1792-1_1
Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of resistance training: Progression and exercise prescription. Medicine and Science in Sports and Exercise, 36(4), 674–688. https://doi.org/10.1249/01.MSS.0000121945.36635.61
Kraemer, W. J., Fleck, S. J., & Evans, W. J. (1996). Strength and power training: physiological mecha-nisms of adaptation. Exercise and sport sciences reviews, 24, 363–397.
Latino, F., Martinez-Roig, R., Setyawan, H., Susanto, N. ., Anam, K. ., Saraiello, E., & Tafuri, F. (2024). Physiological Responses of Wheelchair Basketball Athletes to a Combined Aerobic and Anaero-bic Training Program. Retos, 57, 800–808. https://doi.org/10.47197/retos.v57.107483
Lasso Quilindo, C. A., & Chalapud Narváez, L. M. (2024). High Intensity Interval Training (HIIT) in Para-lympic Athletes. A narrative review. Retos, 51, 1431–1441. https://doi.org/10.47197/retos.v51.101379
Lopez, P., Radaelli, R., Taaffe, D. R., Newton, R. U., Galvão, D. A., Trajano, G. S., Teodoro, J. L., Kraemer, W. J., Häkkinen, K., & Pinto, R. S. (2021). Resistance Training Load Effects on Muscle Hypertrophy and Strength Gain: Systematic Review and Network Meta-analysis. Medicine and science in sports and exercise, 53(6), 1206–1216. https://doi.org/10.1249/MSS.0000000000002585
Lundby, C., Montero, D., & Joyner, M. (2017). Biology of VO2 max: looking under the physiology lamp. Acta physiologica (Oxford, England), 220(2), 218–228. https://doi.org/10.1111/apha.12827
Martín-Rodríguez, A., Belinchón-deMiguel, P., Rubio-Zarapuz, A., Tornero-Aguilera, J. F., Martínez-Guardado, I., Villanueva-Tobaldo, C. V., & Clemente-Suárez, V. J. (2024). Advances in Under-standing the Interplay between Dietary Practices, Body Composition, and Sports Performance in Athletes. Nutrients, 16(4), 571. https://doi.org/10.3390/nu16040571
Martins, R., & Loureiro, N. . (2023). Effects of 6 Weeks of Low-Volume Combined Training on Muscle Power, Muscular Strength, and Aerobic Power in Active Young Adults. Retos, 50, 478–486. https://doi.org/10.47197/retos.v50.99698
McMahon, J. J., Comfort, P., & Pearson, S. (2012). Lower limb stiffness: Effect on performance and training considerations. Strength & Conditioning Journal, 34(6), 94-101. https://doi.org/10.1519/SSC.0b013e3182781b4e
McWeeny, D. K., Boule, N. G., Neto, J. H. F., & Kennedy, M. D. (2020). Effect of high intensity functional training and traditional resistance training on aerobic, anaerobic, and musculoskeletal fitness improvement. Journal of Physical Education and Sport, 20(4), 1791-1802. https://doi.org/10.7752/jpes.2020.04243
Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of cardiac anesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.ACA_157_18
Moscatelli, F., Messina, G., Polito, R., Porro, C., Monda, V., Monda, M., Scarinci, A., Dipace, A., Cibelli, G., Messina, A., & Valenzano, A. (2023). Aerobic and Anaerobic Effect of CrossFit Training: A Narra-tive Review. Sport Mont, 21(1), 123-128. https://doi.org/10.26773/smj.230220
Moscatelli, F., Messina, G., Valenzano, A., Triggiani, A. I., Sessa, F., Carotenuto, M., Tartaglia, N., Ambrosi, A., Cibelli, G., & Monda, V. (2020). Effects of twelve weeks' aerobic training on motor cortex ex-citability. The Journal of sports medicine and physical fitness, 60(10), 1383–1389. https://doi.org/10.23736/S0022-4707.20.10677-7
Nebigh, A., Touhami, I., Chtara, M., Govindasamy, K., Surech, C., Hage, R. E., Saeidi, A., Boullosa, D., Clark, C. C. T., Granacher, U., & Zouhal, H. (2023). The Impact of Sport-discipline and Sex on Physical Fitness and Bone Markers in Athletes. International journal of sports medicine, 44(10), 736–743. https://doi.org/10.1055/a-2038-3040
Nurkholis, N., Suyoko, A., Subagio, I., Phanpheng, Y., Kusuma, I. D. M. A. W., & Pranoto, A. (2024). The Effect of Anaerobic Interval Air Rowing Training (AIART) on Increasing Strength and Endur-ance of Upper Body Muscles in Rowing Athletes. Retos, 61, 1025–1030. https://doi.org/10.47197/retos.v61.109793
Saadati, S. A. (2023). Recent Innovations in Sports Physiology: Shaping the Future of Athletic Perfor-mance. Health Nexus, 1(2), 15-27. https://doi.org/10.61838/kman.hn.1.2.3
Sánchez Benavides, C. L. ., Galindo-Perdomo, F. ., & Monterrosa Quintero, A. (2024). Analysis of Two Training Methods for Jump Development in Elite Young Cheerleaders. Retos, 55, 266–273. https://doi.org/10.47197/retos.v55.102262
Sale, D. G. (1988). Neural adaptation to resistance training. Medicine and Science in Sports and Exercise, 20(5 Suppl), S135–S145. https://doi.org/10.1249/00005768-198810001-00009
Saghiv, M., S. & Sagiv M. S. (2020). Oxygen uptake and anaerobic performances. Basic Exercise Physiol-ogy: Clinical and Laboratory Perspectives, 149-205.
Sayers, S. P., Harackiewicz, D. V., Harman, E. A., Frykman, P. N., & Rosenstein, M. T. (1999). Cross-validation of three jump power equations. Medicine and science in sports and exercise, 31(4), 572–577. https://doi.org/10.1097/00005768-199904000-00013
Shaw, K., Gennat, H., O'Rourke, P., & Del Mar, C. (2006). Exercise for overweight or obesity. Cochrane Database of Systematic Reviews, 2006(4), CD003817. https://doi.org/10.1002/14651858.CD003817.pub3
Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. Journal of Strength and Conditioning Research, 24(10), 2857-2872. https://doi.org/10.1519/JSC.0b013e3181e840f3
Schoenfeld, B. J., Grgic, J., Van Every, D. W., & Plotkin, D. L. (2021). Loading recommendations for mus-cle strength, hypertrophy, and local endurance: A re-examination of the repetition continuum. Sports, 9(2), 32. https://doi.org/10.3390/sports9020032
Stamford, B. A., Loprinzi, P. D., & Maskalick, S. (2023). Exercise Physiology. In: Placzek, J., D. & Boyce, D. A. (Eds). Orthopaedic Physical Therapy Secrets-E-Book: Orthopaedic Physical Therapy Se-crets-E-Book, 38-47
Strasser, B., & Schobersberger, W. (2011). Evidence for resistance training as a treatment therapy in obesity. Journal of Obesity, 2011, Article ID 482564. https://doi.org/10.1155/2011/482564
Susiono, R. ., Sugiyanto, F. ., Lumintuarso, R. ., & Tomoliyus, T. (2025). Effect of High-Intensity Interval Training and unification training on Aerobic Capacity and Muscle Strength in Intermediate Dis-tance Runners- a systematic review. Retos, 63, 698–712. https://doi.org/10.47197/retos.v63.111191
Tauda, M., Cruzat Bravo , E. J. ., & Suárez Rojas, F. I. (2024). Metabolic and cardiac adaptations during a strength protocol at the anaerobic threshold over 8 weeks. Retos, 54, 406–416. https://doi.org/10.47197/retos.v54.103654
Tyshchenko, V., Tovsiopiatko, F., Sokolova, L., & Budnikov, O. (2023). Improving the aerobic possibili-ties of qualified athletes. Scientific Journal of the Dragomanov Ukrainian State University, (9(169), 139-142. https://doi.org/10.31392/NPU-nc.series15.2023.9(169).30
Wackerhage, H., & Schoenfeld, B. J. (2021). Personalized, Evidence-Informed Training Plans and Exer-cise Prescriptions for Performance, Fitness and Health. Sports medicine (Auckland, N.Z.), 51(9), 1805–1813. https://doi.org/10.1007/s40279-021-01495-w
Wilson, J. M., Marin, P. J., Rhea, M. R., Wilson, S. M. C., Loenneke, J. P., & Anderson, J. C. (2012). Concur-rent training: A meta-analysis examining interference of aerobic and resistance exercis-es. Journal of Strength and Conditioning Research, 26(8), 2293–2307. https://doi.org/10.1519/JSC.0b013e31823a3e2d
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2025 Md. Shahariar Kabir, Ilham Ilham, Sunita Yadav, Vlad Adrian Geantă

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e assegurar a revista o direito de ser a primeira publicação da obra como licenciado sob a Licença Creative Commons Attribution que permite que outros para compartilhar o trabalho com o crédito de autoria do trabalho e publicação inicial nesta revista.
- Os autores podem estabelecer acordos adicionais separados para a distribuição não-exclusiva da versão do trabalho publicado na revista (por exemplo, a um repositório institucional, ou publicá-lo em um livro), com reconhecimento de autoria e publicação inicial nesta revista.
- É permitido e os autores são incentivados a divulgar o seu trabalho por via electrónica (por exemplo, em repositórios institucionais ou no seu próprio site), antes e durante o processo de envio, pois pode gerar alterações produtivas, bem como a uma intimação mais Cedo e mais do trabalho publicado (Veja O Efeito do Acesso Livre) (em Inglês).
Esta revista é a "política de acesso aberto" de Boai (1), apoiando os direitos dos usuários de "ler, baixar, copiar, distribuir, imprimir, pesquisar, ou link para os textos completos dos artigos". (1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess