Perfil de stress oxidativo, inflamação e dano muscular em atletas profissionais e jogadores recreativos de basquetebol

Autores

  • Lilik Herawati Department of Physiology, Faculty of Medicine, Universitas Airlangga
  • Gadis Meinar Sari Department of Physiology, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0002-9178-8926
  • Raden Argarini Department of Physiology, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0002-5908-6270
  • Irfiansyah Irwadi Department of Physiology, Faculty of Medicine, Universitas Airlangga
  • Sapto Wibowo Physical Education, Health and Recreation Department, Faculty of Sport Science, Universitas Negeri Surabaya
  • Oce Wiriawan Department of Sport Science, Postgraduate Program, Universitas Negeri Surabaya
  • Achmad Syaifudin Department of Medical Technology, Faculty of Medicine and Health, Institut Teknologi Sepuluh Nopember https://orcid.org/0000-0001-8109-9396
  • Yuri Pamungkas Department of Medical Technology, Faculty of Medicine and Health, Institut Teknologi Sepuluh Nopember
  • Radityo Putro Handrito Department of Management, Faculty of Economics and Business, Universitas Brawijaya
  • Sapto Adi Department of Sports Science, Faculty of Sport Science, Universitas Negeri Malang https://orcid.org/0000-0001-6801-524X
  • Kurniati Rahayuni Department of Sport Coaching Education, Universitas Negeri Malang
  • Ulul Azmy Department of Physiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0003-2621-9484
  • Nik Shanita Safii Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia https://orcid.org/0000-0003-0789-1486

DOI:

https://doi.org/10.47197/retos.v65.111599

Palavras-chave:

Antioxidante, stress oxidativo induzido pelo exercício, inflamação, lesões musculares, estilo de vida saudável

Resumo

Introdução: Para alcançar um estilo de vida saudável, várias pessoas fisicamente ativas praticam desportos populares como o basquetebol, como passatempo. No entanto, as diferentes respostas fisiológicas entre atletas e jogadores recreativos ainda não foram compreendidas.
Objectivo: Este estudo tem como objectivo analisar as diferenças nos antioxidantes, radicais livres, inflamação e marcadores de dano muscular entre atletas profissionais e jogadores de basquetebol recreativo.
Metodologia: Os sujeitos foram atletas profissionais (PA, n = 10) e jogadores de basquetebol recreativo (RP, n = 10). Todos os sujeitos jogaram basquetebol 5x5. A frequência cardíaca (FC) foi registada durante o jogo. Foram analisados ​​a ​​glutationa peroxidase (GPX), F2-isoprostano, proteína C reativa (PCR) e lactato desidrogenase (LDH).
Resultados: Foi demonstrado que o PA apresentou uma FCmáx mais baixa em comparação com o grupo RP (p = 0,001), enquanto o nível de marcadores sanguíneos entre os grupos PA e RP foi uma diferença insignificante (p≥0,05). No entanto, a PCR dos atletas profissionais tendeu a diminuir após o jogo, enquanto o grupo PR teve um pequeno aumento após 1 hora. Ambos os grupos apresentaram uma diminuição transitória do LDH após 1 hora. Curiosamente, 1 hora após os jogos, o RP sofreu uma ligeira diminuição do nível de isoprostano F2, enquanto o PA sofreu uma pequena diminuição do nível de GPX.
Conclusões: Os atletas profissionais apresentam melhor resistência cardiovascular. No entanto, após 1 hora de jogo, a LDH, PCR, F2-IsoPs e GPX parecem semelhantes em ambos os grupos. Isto indica que os jogadores recreativos têm um bom benefício como pessoas ativas. Apesar de a tendência do nível de pontuação nos atletas profissionais ser superior à dos jogadores recreativos. No entanto, ainda são necessárias mais pesquisas para determinar o mecanismo de resposta fisiológica com marcadores mais completos.

Referências

As’ad, M. R. F., Sari, G. M., Othman, Z., & Herawati, L. (2022). The combination of intermittent caloric restriction and moderate-intensity interval training in decreasing blood glucose and CRP levels with a high glycemic index diet. Kuwait Journal of Science, 49(8.5.2017), 1–11. https://doi.org/10.48129/kjs.12365

Awang Daud, D. M., Ahmedy, F., Baharuddin, D. M. P., & Zakaria, Z. A. (2022). Oxidative Stress and Antioxidant Enzymes Activity after Cycling at Different Intensity and Duration. Applied Sciences (Switzerland), 12(18). https://doi.org/10.3390/app12189161

Ayubi, N., Purwanto, B., Rejeki, P. S., Kusnanik, N. W., Herawati, L., Komaini, A., Mutohir, T. C., Nurhasan, N., Al Ardha, M. A., & Firmansyah, A. (2022). El efecto de la suplementación aguda con omega 3 reduce los niveles séricos del factor de necrosis tumoral alfa (TNF-a), la intensidad del dolor y mantiene la fuerza muscular después del entrenamiento con pesas de alta intensidad (Effect of acute omega 3 supplementation reduces serum tumor necrosis factor-alpha (TNF-a) levels, pain intensity, and maintains muscle strength after high-intensity weight training). Retos, 46, 677–682. https://doi.org/10.47197/retos.v46.93720

Ayubi, N., Yuniarti, E., Kusnanik, N. W., Herawati, L., Indika, P. M., Putra, R. Y., & Komaini, A. (2022). Acute effects of n-3 polyunsaturated fatty acids (PUFAs) reducing tumor necrosis factor-alpha (TNF-a) levels and not lowering malondialdehyde (MDA) levels after anaerobic exercise. Journal of Biological Regulators and Homeostatic Agents, 36(1), 7–11. https://doi.org/10.23812/21-468-A

Bazgir, B., Salesi, M., Koushki, M., & Amirghofran, Z. (2015). Effects of eccentric and concentric emphasized resistance exercise on IL-15 serum levels and its relation to inflammatory markers in athletes and non-athletes. Asian Journal of Sports Medicine, 6(3). https://doi.org/10.5812/asjsm.27980

Callegari, G. A., Novaes, J. S., Neto, G. R., Dias, I., Garrido, N. D., & Dani, C. (2017). Creatine Kinase and Lactate Dehydrogenase Responses after Different Resistance and Aerobic Exercise Protocols. Journal of Human Kinetics, 58(1), 65–72. https://doi.org/10.1515/hukin-2017-0071

Cerqueira, É., Marinho, D. A., Neiva, H. P., & Lourenço, O. (2020). Inflammatory Effects of High and Moderate Intensity Exercise—A Systematic Review. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.01550

Darmawan, R., Mujahidin, I., Salamy, M. F. A. S., Azmy, U., Prabowo, G. I., Angga, P. D., Mohamed, M. N. A., & Herawati, L. (2024). Profile of F2-Isoprostane Level After 5-Day Administration of Robusta Coffee at a Steady State Dose in Subjects Performing Physical Exercise. Retos, 53, 116–121.

Fedewa, M. V., Hathaway, E. D., & Ward-Ritacco, C. L. (2017). Effect of exercise training on C reactive protein: A systematic review and meta-Analysis of randomised and non-randomised controlled trials. In British Journal of Sports Medicine (Vol. 51, Issue 8, pp. 670–676). BMJ Publishing Group. https://doi.org/10.1136/bjsports-2016-095999

García-Cardona, D. M., Landázuri, P., Ayala-Zuluaga, C. F., & Cortes, B. R. (2022). Biochemical markers of oxidative stress in female volleyball players. Effect of consumption of Passiflora edulis. Retos, 43, 603.

Hajizadeh Maleki, B., Tartibian, B., Eghbali, M., & Asri-Rezaei, S. (2013). Comparison of seminal oxidants and antioxidants in subjects with different levels of physical fitness. Andrology, 1(4), 607–614. https://doi.org/10.1111/j.2047-2927.2012.00023.x

IOM (Institute of Medicine), & NRC (National Research Council). (2015). Investing in the Health and Well-Being of Young Adults. The National Academies press. http://www.nap.edu/catalog.php?record_id=18869

Karuzin, K., Martusevich, A., & Samoilov, A. (2018). Complex Assessment of the Blood Oxidative Metabolism in Qualified Athletes. International Journal of Biomedicine, 8(3), 235–239. https://doi.org/10.21103/Article8(3)_OA14

Kawamura, T., & Muraoka, I. (2018). Exercise-induced oxidative stress and the effects of antioxidant intake from a physiological viewpoint. In Antioxidants (Vol. 7, Issue 9). MDPI. https://doi.org/10.3390/antiox7090119

Kurniawati, M., Merawati, D., & Pranoto, A. (2024). Physiological Impact Of Aerobic Exercise During Fasting On Inflammatory Risk Factors In Obese Women. Retos, 55, 289–295. https://recyt.fecyt.es/index.php/retos/index

Lauretani, F., Roberto Russo, C., Bandinelli, S., Bartali, B., Cavazzini, C., Di Iorio, A., Maria Corsi, A., Rantanen, T., Guralnik, J. M., Ferrucci, L., & Di Iorio, A. (2003). Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol, 95, 1851–1860. https://doi.org/10.1152/japplphysiol.00246.2003.-Sarcopenia

Leeuwenburgh, C., & Heinecke, J. (2012). Oxidative Stress and Antioxidants in Exercise. Current Medicinal Chemistry, 8(7), 829–838. https://doi.org/10.2174/0929867013372896

Liang, X., Liu, L., Fu, T., Zhou, Q., Zhou, D., Xiao, L., Liu, J., Kong, Y., Xie, H., Yi, F., Lai, L., Vega, R. B., Kelly, D. P., Smith, S. R., & Gan, Z. (2016). Exercise inducible lactate dehydrogenase B regulates mitochondrial function in skeletal muscle. Journal of Biological Chemistry, 291(49), 25306–25318. https://doi.org/10.1074/jbc.M116.749424

Llinás, E. J., & Caballero, Y. C. (2024). Effectiveness of cryotherapy in the musculoskeletal recovery of martial artists: Systematic review. Retos, 54, 676–691.

Martínez, A. E. D., Martín, M. J. A., & González-Gross, M. (2022). Basal Values of Biochemical and Hematological Parameters in Elite Athletes. International Journal of Environmental Research and Public Health, 19(5). https://doi.org/10.3390/ijerph19053059

Milne, G. L. (2017). Classifying oxidative stress by F 2 -Isoprostane levels in human disease: The re-imagining of a biomarker. In Redox Biology (Vol. 12, pp. 897–898). Elsevier B.V. https://doi.org/10.1016/j.redox.2017.04.028

Olson, M. E., Hornick, M. G., Stefanski, A., Albanna, H. R., Gjoni, A., Hall, G. D., Hart, P. C., Rajab, I. M., & Potempa, L. A. (2023). A biofunctional review of C-reactive protein (CRP) as a mediator of inflammatory and immune responses: differentiating pentameric and modified CRP isoform effects. In Frontiers in Immunology (Vol. 14). Frontiers Media SA. https://doi.org/10.3389/fimmu.2023.1264383

Pei, J., Pan, X., Wei, G., & Hua, Y. (2023). Research progress of glutathione peroxidase family (GPX) in redoxidation. In Frontiers in Pharmacology (Vol. 14). Frontiers Media SA. https://doi.org/10.3389/fphar.2023.1147414

Plaisance, E. P., & Grandjean, P. W. (2006). Physical activity and high-sensitivity C-reactive protein. In Sports Medicine (Vol. 36, Issue 5, pp. 443–458). https://doi.org/10.2165/00007256-200636050-00006

Vigriawan, G. E., Putri, E. A. C., Rejeki, P. S., Qurnianingsih, E., Kinanti, R. G., Mohamed, M. N. A., & Herawati, L. (2022). High-intensity interval training improves physical performance without C-reactive protein (CRP) level alteration in overweight sedentary women. Journal of Physical Education and Sport, 22(2), 442–447. https://doi.org/10.7752/jpes.2022.02055

Zare, M., Shateri, Z., Nouri, M., Sarbakhsh, P., Eftekhari, M. H., & Gargari, B. P. (2023). Association between urinary levels of 8-hydroxy-2-deoxyguanosine and F2a-isoprostane in male football players and healthy non-athlete controls with dietary inflammatory and antioxidant indices. Frontier in Nutrition, 9(1101532.). https://doi.org/10.3389/fnut.2022.1101532

Zhou, Y., Qi, M., & Yang, M. (2022). Current Status and Future Perspectives of Lactate Dehydrogenase Detection and Medical Implications: A Review. Biosensors, 12, 1145. https://doi.org/10.3390/bios12121145

Downloads

Publicado

24-02-2025

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Como Citar

Herawati, L., Sari, G. M., Argarini, R., Irwadi, I., Wibowo, S., Wiriawan, O., Syaifudin, A., Pamungkas, Y., Handrito, R. P., Adi, S., Rahayuni, K., Azmy, U., & Safii, N. S. (2025). Perfil de stress oxidativo, inflamação e dano muscular em atletas profissionais e jogadores recreativos de basquetebol. Retos, 65, 235-245. https://doi.org/10.47197/retos.v65.111599