Aumento da atividade da proteína quinase ativada por monofosfato de adenosina em ratinhos com intervenção de exercício físico: uma revisão sistemática

Autores

  • Suryanto Agung Prabowo Universitas Negeri Surabaya
  • Junian Cahyanto Wibawa STKIP PGRI Trenggalek https://orcid.org/0009-0009-2597-5350
  • Hamdani Hamdani Universitas Negeri Surabaya
  • Nanang Indriarsa Universitas Negeri Surabaya
  • Muchamad Arif Al Ardha Universitas Negeri Surabaya
  • Taufiq Hidayat Universitas Negeri Surabaya
  • Irmantara Subagio Universitas Negeri Surabaya
  • Iwan Barata Universitas Negeri Jakarta
  • Joseph Lobo Bulacan State University https://orcid.org/0000-0002-2553-467X
  • Novadri Ayubi Universitas Negeri Surabaya https://orcid.org/0000-0002-5196-6636

DOI:

https://doi.org/10.47197/retos.v68.115136

Palavras-chave:

AMPK, Exercício físico, HIIT, GLUT4

Resumo

Introdução: O exercício físico foi identificado como um dos fatores externos que pode ativar a AMPK, mas o mecanismo e os efeitos ainda não são claros e requerem mais investigação.
Objectivo: O objectivo deste estudo foi examinar como o exercício físico aumenta a fosforilação da AMPK numa perspectiva fisiológica.
Metodologia: Nesta revisão sistemática foram realizadas pesquisas em bases de dados bibliográficas como a MEDLINE-Pubmed, Web of Science, Scopus e Science Direct. Os artigos publicados nos últimos cinco anos que abordaram a AMPK, o exercício aeróbico e o treino intervalado de alta intensidade cumpriram os critérios de inclusão. Foram encontrados 103 artigos publicados com recurso às bases de dados Web of Science, Pubmed e Science Direct. Para esta revisão sistemática, foram selecionados e analisados ​​dez artigos que cumpriam os critérios de inclusão. Neste estudo, o procedimento operacional padrão (PRIS-MA) foi avaliado utilizando os Itens de Relato Preferenciais para Revisões Sistemáticas e Meta-Análises.
Resultados: Foi demonstrado que o exercício aumenta a fosforilação da AMPK.
Discussão: Os exercícios de alta intensidade têm maior potencial para aumentar a AMPK do que os exercícios aeróbicos devido ao aumento da relação AMP/ATP, ao aumento do stress metabólico e à adaptação mitocondrial. A ativação da AMPK foi também associada ao aumento da oxidação dos ácidos gordos e à captação de glicose pelo músculo.
Conclusões: Pode concluir-se que o exercício físico demonstrou aumentar consistentemente a ativação da AMPK e tem um impacto positivo na regulação metabólica. Por isso, o exercício físico é uma intervenção eficaz para melhorar a função metabólica. Está demonstrado que o exercício físico aumenta a fosforilação da AMPK, o que aumenta a translocação do GLUT4 e a captação de glicose.

Referências

Agyemang-Yeboah, F. et al. (2019) ‘Evaluation of metabolic syndrome and its associated risk factors in type 2 diabetes: A Descriptive Cross-Sectional Study at the Komfo Anokye Teaching Hospital, Kumasi, Ghana’, BioMed Research International, 2019. Available at: https://doi.org/10.1155/2019/4562904.

Bauman, A.E. et al. (2021) ‘An evidence-based assessment of the impact of the Olympic Games on population levels of physical activity’, The Lancet, 398(10298), pp. 456–464. Available at: https://doi.org/10.1016/S0140-6736(21)01165-X.

Budreviciute, A. et al. (2020) ‘Management and Prevention Strategies for Non-communicable Diseases (NCDs) and Their Risk Factors’, Frontiers in Public Health, 8(November), pp. 1–11. Available at: https://doi.org/10.3389/fpubh.2020.574111.

Bull, F.C. et al. (2020) ‘World Health Organization 2020 guidelines on physical activity and sedentary behaviour’, British Journal of Sports Medicine, 54(24), pp. 1451–1462. Available at: https://doi.org/10.1136/bjsports-2020-102955.

Chen, J. et al. (2022) ‘Molecular mechanisms of exercise contributing to tissue regeneration’, Signal Transduction and Targeted Therapy, 7(1). Available at: https://doi.org/10.1038/s41392-022-01233-2.

Chen, M. et al. (2023) ‘Cdo1-Camkk2-AMPK axis confers the protective effects of exercise against NAFLD in mice’, Nature Communications, 14(1), pp. 1–19. Available at: https://doi.org/10.1038/s41467-023-44242-7.

Cheng, F. et al. (2022) ‘Exercise activates autophagy and regulates endoplasmic reticulum stress in muscle of high-fat diet mice to alleviate insulin resistance’, Biochemical and Biophysical Re-search Communications, 601, pp. 45–51. Available at: https://doi.org/10.1016/j.bbrc.2022.02.058.

Chiang, J.K. et al. (2024) ‘The Impact on Autonomic Nervous System Activity during and Following Ex-ercise in Adults: A Meta-Regression Study and Trial Sequential Analysis’, Medicina (Lithuania), 60(8). Available at: https://doi.org/10.3390/medicina60081223.

D, Jamie I. vaner Vaart 1, M.R.B. and R.H.H. (2021) ‘The Role of AMPK Signaling in Brown Adipose Tis-sue Activation’.

Dahal, S. et al. (2021) ‘Prevalence and determinants of noncommunicable disease risk factors among adult population of Kathmandu’, PLoS ONE, 16(9 September), pp. 1–16. Available at: https://doi.org/10.1371/journal.pone.0257037.

Deng, Y.Y. et al. (2024) ‘Combined Influence of Eight Lifestyle Factors on Metabolic Syndrome Inci-dence: A Prospective Cohort Study from the MECH-HK Study’, Nutrients, 16(4). Available at: https://doi.org/10.3390/nu16040547.

Gejl, K.D. et al. (2020) ‘Effects of Acute Exercise and Training on the Sarcoplasmic Reticulum Ca2+ Re-lease and Uptake Rates in Highly Trained Endurance Athletes’, Frontiers in Physiology, 11(July), pp. 1–11. Available at: https://doi.org/10.3389/fphys.2020.00810.

Guo, K. and Lu, Y. (2024) ‘Acupuncture modulates the AMPK/PGC-1 signaling pathway to facilitate mi-tochondrial biogenesis and neural recovery in ischemic stroke rats’, Frontiers in Molecular Neu-roscience, 17. Available at: https://doi.org/10.3389/fnmol.2024.1388759.

Hardie, D.G. (2020) ‘AMPK as a direct sensor of long-chain fatty acyl–CoA esters’, Nature Metabolism, 2(9), pp. 799–800. Available at: https://doi.org/10.1038/s42255-020-0249-y.

Hargreaves, M. and Spriet, L.L. (2020) ‘Skeletal muscle energy metabolism during exercise’, Nature Me-tabolism [Preprint]. Available at: https://doi.org/10.1038/s42255-020-0251-4.

Kartinah, N.T. et al. (2024) ‘High-intensity interval training increases AMPK and GLUT4 expressions via FGF21 in skeletal muscles of diabetic rats’, 7(1), pp. 136–146.

Khalafi, M. et al. (2020) ‘The impact of moderate-intensity continuous or high-intensity interval train-ing on adipogenesis and browning of subcutaneous adipose tissue in obese male rats’, Nutrients, 12(4). Available at: https://doi.org/10.3390/nu12040925.

Kim, H.J., Kim, Y.J. and Seong, J.K. (2022) ‘AMP-activated protein kinase activation in skeletal muscle modulates exercise-induced uncoupled protein 1 expression in brown adipocyte in mouse model’, Journal of Physiology, 600(10), pp. 2359–2376. Available at: https://doi.org/10.1113/JP282999.

Lauren Jun, Emily Knight 1 , Tom L. Broderick 2, L.A.-N. 2 and J.R.B. (2024) ‘Moderate-Intensity Exer-cise Enhances Mitochondrial Biogenesis Markers in the Skeletal Muscle of a Mouse Model Af-fected by Diet-Induced Obesity’, nutrien [Preprint].

Li, H. et al. (2021) ‘Exercise improves lipid droplet metabolism disorder through activation of AMPK-mediated lipophagy in NAFLD’, Life Sciences, 273(February), p. 119314. Available at: https://doi.org/10.1016/j.lfs.2021.119314.

Lin, J. et al. (2024) ‘Exercise ameliorates muscular excessive mitochondrial fission, insulin resistance and inflammation in diabetic rats via irisin/AMPK activation’, Scientific Reports, 14(1), pp. 1–14. Available at: https://doi.org/10.1038/s41598-024-61415-6.

Lin, J.Y. et al. (2020) ‘Swimming exercise stimulates IGF1/ PI3K/Akt and AMPK/SIRT1/ PGC1α surviv-al signaling to suppress apoptosis and inflammation in aging hippocampus’, Aging, 12(8), pp. 6852–6864. Available at: https://doi.org/10.18632/AGING.103046.

Lundsgaard, A.M., Fritzen, A.M. and Kiens, B. (2020) ‘The importance of fatty acids as nutrients during post-exercise recovery’, Nutrients, 12(2). Available at: https://doi.org/10.3390/nu12020280.

Martín-Rodríguez, A. et al. (2024) ‘Sporting Mind: The Interplay of Physical Activity and Psychological Health’, Sports, 12(1), pp. 1–41. Available at: https://doi.org/10.3390/sports12010037.

Martinez-Huenchullan, S.F. et al. (2019) ‘Constant-moderate and high-intensity interval training have differential benefits on insulin sensitive tissues in high-fat fed mice’, Frontiers in Physiology, 10(APR), pp. 1–17. Available at: https://doi.org/10.3389/fphys.2019.00459.

Di Pietro, P., Izzo, C. and Carrizzo, A. (2023) ‘Editorial: The role of metabolic syndrome and disorders in cardiovascular disease’, Frontiers in Endocrinology, 14(October), pp. 1–4. Available at: https://doi.org/10.3389/fendo.2023.1327394.

Richter, E.A. (2021) ‘Is GLUT4 translocation the answer to exercise-stimulated muscle glucose uptake?’, American Journal of Physiology - Endocrinology and Metabolism, 320(2), pp. E240–E243. Available at: https://doi.org/10.1152/AJPENDO.00503.2020.

Shamsnia, E. et al. (2023) ‘The Effect of Aerobic Exercise on Oxidative Stress in Skeletal Muscle Tissue: A Narrative Review’, Gene, Cell and Tissue, 10(4). Available at: https://doi.org/10.5812/gct-131964.

Shelbayeh, O.A. et al. (2023) ‘PGC-1 α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response’.

Smiles, W.J. et al. (2024) ‘New developments in AMPK and mTORC1 cross-talk’, Essays in Biochemistry, 0(July), pp. 1–16. Available at: https://doi.org/10.1042/ebc20240007.

Spaulding, H.R. and Yan, Z. (2022a) ‘AMPK and the Adaptation to Exercise’, Annual Review of Physiolo-gy, 84(2), pp. 209–227. Available at: https://doi.org/10.1146/annurev-physiol-060721-095517.

Spaulding, H.R. and Yan, Z. (2022b) ‘AMPK and the Adaptation to Exercise’, Annual Review of Physiolo-gy, 84, pp. 209–227. Available at: https://doi.org/10.1146/annurev-physiol-060721-095517.

Tokumitsu, H. and Sakagami, H. (2022) ‘Molecular Mechanisms Underlying Ca2+/Calmodulin-Dependent Protein Kinase Kinase Signal Transduction’, International Journal of Molecular Sci-ences, 23(19). Available at: https://doi.org/10.3390/ijms231911025.

Vargas-Mendoza, N. et al. (2021) ‘Oxidative stress, mitochondrial function and adaptation to exercise: New perspectives in nutrition’, Life, 11(11), pp. 1–24. Available at: https://doi.org/10.3390/life11111269.

Wang, H. et al. (2022) ‘Exercise effects on γ3-AMPK activity, Akt substrate of 160 kDa phosphorylation, and glucose uptake in muscle of normal and insulin-resistant female rats’, Journal of Applied Physiology, 132(1), pp. 140–153. Available at: https://doi.org/10.1152/japplphysiol.00533.2021.

Wang, H. et al. (2023) ‘AS160 expression, but not AS160 Serine-588, Threonine-642, and Serine-704 phosphorylation, is essential for elevated insulin-stimulated glucose uptake by skeletal muscle from female rats after acute exercise’, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 37(7), p. e23021. Available at: https://doi.org/10.1096/fj.202300282RR.

Wibawa, J.C., Arifin, M.Z. and Herawati, L. (2021) ‘Ascorbic Acid Drink after Submaximal Physical Ac-tivity can Maintain the Superoxide Dismutase Levels in East Java Student Regiment’, Indian Journal of Forensic Medicine & Toxicology, 15(3), pp. 3383–3392. Available at: https://doi.org/10.37506/ijfmt.v15i3.15824.

Xiao, L. et al. (2024) ‘AMPK phosphorylation of FNIP1 (S220) controls mitochondrial function and muscle fuel utilization during exercise’, Science Advances, 10(6), pp. 1–15. Available at: https://doi.org/10.1126/sciadv.adj2752.

Zhang, M. et al. (2023) ‘Exercise Training Attenuates Acute β-Adrenergic Receptor Activation-Induced Cardiac Inflammation via the Activation of AMP-Activated Protein Kinase’, International Jour-nal of Molecular Sciences, 24(11). Available at: https://doi.org/10.3390/ijms24119263.

Zuo, C. et al. (2023) ‘Acute and chronic functional and traditional resistance training improve muscular fitness in young males via the ampk/pgc-1α/irisin signaling pathway’, Environmental Health and Preventive Medicine, 28, pp. 1–13. Available at: https://doi.org/10.1265/ehpm.23-00146.

Downloads

Publicado

2025-05-17

Como Citar

Prabowo, S. A., Wibawa, J. C., Hamdani, H., Indriarsa, N., Ardha, M. A. A., Hidayat, T., … Ayubi, N. (2025). Aumento da atividade da proteína quinase ativada por monofosfato de adenosina em ratinhos com intervenção de exercício físico: uma revisão sistemática. Retos, 68, 377–387. https://doi.org/10.47197/retos.v68.115136

Edição

Secção

Revisões teóricas sistemáticas e/ou metanálises