Efeito do treino aeróbio no perfil glicémico em idosos com diabetes tipo 2. Uma revisão sistemática

Autores

DOI:

https://doi.org/10.47197/retos.v71.116213

Palavras-chave:

Treino aeróbico, treino intervalado de alta intensidade, treino contínuo de intensidade moderada, idosos, diabetes mellitus tipo 2

Resumo

Introdução: O treino aeróbico é amplamente recomendado em estudos e guidelines para a prevenção e controlo da diabetes mellitus tipo 2 (DM2).

Objectivo: O objectivo desta revisão sistemática é avaliar os efeitos de várias modalidades de treino aeróbio para determinar se a sua aplicação em diferentes actividades tem maior impacto no perfil glicémico dos idosos com DM2.

Metodologia: Foi conduzida uma revisão sistemática através do método PRISMA para avaliar os efeitos do treino aeróbio em idosos com DM2 nos marcadores sanguíneos como a hemoglobina glicada (HbA1c), a resistência à insulina (HOMA-IR) e a glicemia em jejum (GJ). Foram realizadas pesquisas nas bases de dados PubMed, Scopus, SciELO e WoS. Foram analisados um total de 387 participantes diagnosticados com DM2.

Resultados: A literatura demonstrou que o treino contínuo de intensidade moderada (TICM) e o treino intervalado de alta intensidade (TIAI) reduziram significativamente os marcadores sanguíneos após a intervenção. Seis estudos com TCMI mostraram reduções na HbA1c, três no HOMA-IR e cinco na FPG. Dos estudos com HIIT, três reportaram reduções significativas na HbA1c, um no HOMA-IR e um na FPG. Além disso, dois estudos verificaram que o HIIT produziu melhorias significativas em comparação com o TCMI.

Conclusão: Esta revisão sistemática sugere que tanto o TCMI como o HIIT são eficazes na melhoria do perfil glicémico em idosos diabéticos.

Referências

Baasch‐Skytte, T., Lemgart, C. T., Oehlenschläger, M. H., Petersen, P. E., Hostrup, M., Bangsbo, J., & Gunnarsson, T. P. (2020). Efficacy of 10‐20‐30 training versus moderate‐intensity continuous training on HbA1c, body composition and maximum oxygen uptake in male patients with type 2 diabetes: A randomized controlled trial. Diabetes, Obesity and Metabolism, 22(5), 767–778. https://doi.org/10.1111/dom.13953

Boulé, N. G., Haddad, E., Kenny, G. P., Wells, G. A., & Sigal, R. J. (2001). Effects of Exercise on Glycemic Control and Body Mass in Type 2 Diabetes Mellitus. JAMA, 286(10), 1218. https://doi.org/10.1001/jama.286.10.1218

Braun, B., Eze, P., Stephens, B. R., Hagobian, T. A., Sharoff, C. G., Chipkin, S. R., & Goldstein, B. (2008). Impact of metformin on peak aerobic capacity. Applied Physiology, Nutrition, and Metabolism, 33(1), 61–67. https://doi.org/10.1139/H07-144

Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., Carty, C., Chaput, J.-P., Chastin, S., Chou, R., Dempsey, P. C., DiPietro, L., Ekelund, U., Firth, J., Friedenreich, C. M., Gar-cia, L., Gichu, M., Jago, R., Katzmarzyk, P. T., … Willumsen, J. F. (2020). World Health Organiza-tion 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54(24), 1451–1462. https://doi.org/10.1136/bjsports-2020-102955

Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281. https://doi.org/10.1016/j.diabres.2018.02.023

Coates, A. M., Joyner, M. J., Little, J. P., Jones, A. M., & Gibala, M. J. (2023). A Perspective on High-Intensity Interval Training for Performance and Health. Sports Medicine, 53(S1), 85–96. https://doi.org/10.1007/s40279-023-01938-6

Colberg, S. R., Sigal, R. J., Yardley, J. E., Riddell, M. C., Dunstan, D. W., Dempsey, P. C., Horton, E. S., Cas-torino, K., & Tate, D. F. (2016). Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care, 39(11), 2065–2079. https://doi.org/10.2337/dc16-1728

De Nardi, A. T., Tolves, T., Lenzi, T. L., Signori, L. U., & Silva, A. M. V. da. (2018). High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: A meta-analysis. Diabetes Research and Clinical Practice, 137, 149–159. https://doi.org/10.1016/j.diabres.2017.12.017

DiPietro, L., Dziura, J., Yeckel, C. W., & Neufer, P. D. (2006). Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training. Journal of Ap-plied Physiology, 100(1), 142–149. https://doi.org/10.1152/japplphysiol.00474.2005

ElSayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., Collins, B. S., Cusi, K., Das, S. R., Gibbons, C. H., Giurini, J. M., Hilliard, M. E., Isaacs, D., Johnson, E. L., Kahan, S., Khunti, K., Kosiborod, M., Leon, J., Lyons, S. K., Murdock, L., on behalf of the American Diabetes Association (2023). Introduction and Methodology: Standards of Care in Diabetes-2023. Diabetes care, 46(Suppl 1), S1–S4. https://doi.org/10.2337/dc23-Sint

Feng, J., Zhang, Q., Chen, B., Chen, J., Wang, W., Hu, Y., Yu, J., & Huang, H. (2024). Effects of high-intensity intermittent exercise on glucose and lipid metabolism in type 2 diabetes patients: A systematic review and meta-analysis. Frontiers in Endocrinology, 15. https://doi.org/10.3389/fendo.2024.1360998

Gallegos, L. I. F., Hernández, G. S. I. R., Mata, K. J. M., & Chávez, J. F. A. (2024). Más allá del control glucémico: Beneficios de la actividad física en la calidad de vida de personas con diabetes mellitus tipo 2: una revisión narrativa (Beyond glycemic control: benefits of physical activity on the quality of life of people with type 2 dia-betes mellitus: a narrative review). Retos, 53, 262-270. https://doi.org/10.47197/retos.v53.101811

Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I.-M., Nieman, D. C., & Swain, D. P. (2011). Quantity and Quality of Exercise for Developing and Maintaining Cardi-orespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults. Medicine & Science in Sports & Exercise, 43(7), 1334–1359. https://doi.org/10.1249/MSS.0b013e318213fefb

Haddad, E., Wells, G. A., Sigal, R. J., Boul, N. G., & Kenny, G. P. (2003). Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in Type 2 diabetes mellitus. Diabeto-logia, 46(8), 1071–1081. https://doi.org/10.1007/s00125-003-1160-2

Jansson, A. K., Chan, L. X., Lubans, D. R., Duncan, M. J., & Plotnikoff, R. C. (2022). Effect of resistance training on HbA1c in adults with type 2 diabetes mellitus and the moderating effect of changes in muscular strength: a systematic review and meta-analysis. BMJ Open Diabetes Research & Care, 10(2), e002595. https://doi.org/10.1136/bmjdrc-2021-002595

Jelleyman, C., Yates, T., O’Donovan, G., Gray, L. J., King, J. A., Khunti, K., & Davies, M. J. (2015). The ef-fects of high‐intensity interval training on glucose regulation and insulin resistance: a meta‐analysis. Obesity Reviews, 16(11), 942–961. https://doi.org/10.1111/obr.12317

Jiang, Y., Tan, S., Wang, Z., Guo, Z., Li, Q., & Wang, J. (2020). Aerobic exercise training at maximal fat oxidation intensity improves body composition, glycemic control, and physical capacity in old-er people with type 2 diabetes. Journal of Exercise Science & Fitness, 18(1), 7–13. https://doi.org/10.1016/j.jesf.2019.08.003

Lazarevic, G., Antic, S., Cvetkovic, T., Vlahovic, P., Tasic, I., & Stefanovic, V. (2006). A physical activity programme and its effects on insulin resistance and oxidative defense in obese male patients with type 2 diabetes mellitus. Diabetes & Metabolism, 32(6), 583–590. https://doi.org/10.1016/S1262-3636(07)70312-9

Liubaoerjijin, Y., Terada, T., Fletcher, K., & Boulé, N. G. (2016). Effect of aerobic exercise intensity on glycemic control in type 2 diabetes: a meta-analysis of head-to-head randomized trials. Acta Diabetologica, 53(5), 769–781. https://doi.org/10.1007/s00592-016-0870-0

Mitranun, W., Deerochanawong, C., Tanaka, H., & Suksom, D. (2014). Continuous vs interval training on glycemic control and macro‐ and microvascular reactivity in type 2 diabetic patients. Scan-dinavian Journal of Medicine & Science in Sports, 24(2). https://doi.org/10.1111/sms.12112

Molina-Sotomayor, E., Onetti-Onetti, W., Castillo-Rodríguez, A., & González-Jurado, J. A. (2020). Chang-es in Cognitive Function and in the Levels of Glycosylated Haemoglobin (HbA1c) in Older Women with Type 2 Diabetes Mellitus Subjected to a Cardiorespiratory Exercise Programme. Sustainability, 12(12), 5038. https://doi.org/10.3390/su12125038

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. https://doi.org/10.1016/j.recesp.2021.06.016

Pan, B., Ge, L., Xun, Y., Chen, Y., Gao, C., Han, X., Zuo, L., Shan, H., Yang, K., Ding, G., & Tian, J. (2018). Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. International Journal of Behavioral Nutrition and Physical Activity, 15(1), 72. https://doi.org/10.1186/s12966-018-0703-3

Pandey, A., Suskin, N., & Poirier, P. (2017). The Impact of Burst Exercise on Cardiometabolic Status of Patients Newly Diagnosed With Type 2 Diabetes. Canadian Journal of Cardiology, 33(12), 1645–1651. https://doi.org/10.1016/j.cjca.2017.09.019

Petersmann, A., Müller-Wieland, D., Müller, U. A., Landgraf, R., Nauck, M., Freckmann, G., Heinemann, L., & Schleicher, E. (2019). Definition, Classification and Diagnosis of Diabetes Mellitus. Exper-imental and Clinical Endocrinology & Diabetes, 127(S 01), S1–S7. https://doi.org/10.1055/a-1018-9078

Robinson, E., Durrer, C., Simtchouk, S., Jung, M. E., Bourne, J. E., Voth, E., & Little, J. P. (2015). Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes. Journal of Applied Physiology, 119(5), 508–516. https://doi.org/10.1152/japplphysiol.00334.2015

Rohmansyah, N. A., Ka Praja, R., Phanpheng, Y., & Hiruntrakul, A. (2023). High-Intensity Interval Train-ing Versus Moderate-Intensity Continuous Training for Improving Physical Health in Elderly Women. Inquiry: A Journal of Medical Care Organization, Provision and Financing, 60, 469580231172870. https://doi.org/10.1177/00469580231172870

Sampath Kumar, A., Maiya, A. G., Shastry, B. A., Vaishali, K., Ravishankar, N., Hazari, A., Gundmi, S., & Jadhav, R. (2019). Exercise and insulin resistance in type 2 diabetes mellitus: A systematic re-view and meta-analysis. Annals of Physical and Rehabilitation Medicine, 62(2), 98–103. https://doi.org/10.1016/j.rehab.2018.11.001

Stanton, K. M., Kienzle, V., Dinnes, D. L. M., Kotchetkov, I., Jessup, W., Kritharides, L., Celermajer, D. S., & Rye, K. (2022). Moderate‐ and High‐Intensity Exercise Improves Lipoprotein Profile and Cho-lesterol Efflux Capacity in Healthy Young Men. Journal of the American Heart Association: Car-diovascular and Cerebrovascular Disease, 11(12), e023386. https://doi.org/10.1161/JAHA.121.023386

Suntraluck, S., Tanaka, H., & Suksom, D. (2017). The Relative Efficacy of Land-Based and Water-Based Exercise Training on Macro- and Microvascular Functions in Older Patients With Type 2 Diabe-tes. Journal of Aging and Physical Activity, 25(3), 446–452. https://doi.org/10.1123/japa.2016-0193

Taghizadeh, M., Ahmadizad, S., & Naderi, M. (2018). Effects of endurance training on hsa-miR-223, P2RY12 receptor expression and platelet function in type 2 diabetic patients. Clinical Hem-orheology and Microcirculation, 68(4), 391–399. https://doi.org/10.3233/CH-170300

Tan, S., Du, P., Zhao, W., Pang, J., & Wang, J. (2018). Exercise Training at Maximal Fat Oxidation Intensi-ty for Older Women with Type 2 Diabetes. International Journal of Sports Medicine, 39(05), 374–381. https://doi.org/10.1055/a-0573-1509

Tauda, M., Cruzat Bravo, E., & Suárez Rojas, F. (2025). Entrenamiento interválico de alta intensidad versus entrenamiento continuo moderado en la rehabilitación cardiaca: Revisión Sistemática y Meta-análisis. Retos, 63, 433–458. https://doi.org/10.47197/retos.v63.110286

Terada, T., Friesen, A., Chahal, B. S., Bell, G. J., McCargar, L. J., & Boulé, N. G. (2013). Feasibility and pre-liminary efficacy of high intensity interval training in type 2 diabetes. Diabetes Research and Clinical Practice, 99(2), 120–129. https://doi.org/10.1016/j.diabres.2012.10.019

Weston, K. S., Wisløff, U., & Coombes, J. S. (2014). High-intensity interval training in patients with life-style-induced cardiometabolic disease: a systematic review and meta-analysis. British Journal of Sports Medicine, 48(16), 1227–1234. https://doi.org/10.1136/bjsports-2013-092576

Publicado

2025-08-14

Como Citar

Fuentealba Sánchez, J. C., Hermosilla Palma, F., Olate Pasten, Y., Reyes Amigo, T., Díaz-Alvarado, M., Luarte Rocha, C., … Gómez-Álvarez, N. (2025). Efeito do treino aeróbio no perfil glicémico em idosos com diabetes tipo 2. Uma revisão sistemática. Retos, 71, 207–219. https://doi.org/10.47197/retos.v71.116213

Edição

Secção

Revisões teóricas sistemáticas e/ou metanálises