Viscoelastic adaptations of Achilles and patellar tendons in elite athletes: a cross-sport myotonometry study
DOI:
https://doi.org/10.47197/retos.v73.117202Keywords:
Biomechanics, Elite athletes, Myoton, Stiffness, patellar ligament, sports performance, achilles tendonAbstract
Objective: To analyze and compare the viscoelastic properties of the Achilles and patellar tendons in elite athletes from different sports and determine whether there are significant differences attributable to sport-specific mechanical loading.
Methods: This is a cross-sectional study in which a total of 105 elite athletes (33 females; 72 males) from 11 distinct sport disciplines (road cycling, roller hockey, karate, athletics, volleyball, taekwondo, speed skating, judo, archery, handball, and boxing) were evaluated at a national high-performance sports center. The viscoelastic properties (stiffness, relaxation, decrement, among others) of both tendons were measured bilaterally using a portable myotonometry device (Myoton Pro®, Myoton, Tallinn, Estonia). The primary outcome was tendon stiffness. Results: Significant differences were found in all measured variables for both tendons (p < 0.001) across sports, except for the decrement parameter in the patellar tendon (p = 0.45). The Achilles tendon demonstrated greater sport-specific adaptation, with stiffness showing the highest number of inter-sport differences (29 significant pairwise comparisons). Relaxation was the most variable parameter in the patellar tendon (9 significant comparisons).
Conclusions: The findings demonstrate that the viscoelastic properties of the Achilles and patellar tendons differ significantly based on the sport practiced by elite athletes. This suggests that long-term, sport-specific mechanical loading plays a crucial role in tendon adaptation, leading to functional specialization. While the cross-sectional design precludes causal inference, these results provide valuable reference data for training prescription and injury prevention strategies tailored to specific athletic disciplines.
References
Althoff, A. D., Vance, K., Plain, M., Reeves, R. A., Pierce, J., Gwathmey, F. W., & Werner, B. C. (2024). Evaluation of achilles tendon stiffness as measured by shear wave elastography in female co-llege athletes compared with nonathletes. Sports Health, 16(1), 12-18.
Bravo-Sánchez, A., Abián, P., Jimenez, F., & Abián-Vicén, J. (2021). Structural and mechanical proper-ties of the Achilles tendon in senior badminton players: Operated vs. non-injured tendons. Cli-nical biomechanics, 85, 105366.
Bravo-Sánchez, A., Abián, P., Jiménez, F., & Abián-Vicén, J. (2019). Myotendinous asymmetries derived from the prolonged practice of badminton in professional players. PLoS One, 14(9), e0222190.
Brughelli, M., & Cronin, J. (2008). A review of research on the mechanical stiffness in running and jum-ping: methodology and implications. Scandinavian Journal of Medicine & Science in Sports, 18(4), 417-426. doi:https://doi.org/10.1111/j.1600-0838.2008.00769.x
Chalatzoglidis, G., Arabatzi, F., & Christou, E. A. (2021). Motor Control and Achilles Tendon Adaptation in Adolescence: Effects of Sport Participation and Maturity. J Hum Kinet, 76, 101-116. doi:10.2478/hukin-2021-0003
Chang, T.-T., Li, Z., Wang, X.-Q., & Zhang, Z.-J. (2020). Stiffness of the Gastrocnemius–Achilles Tendon Complex Between Amateur Basketball Players and the Non-athletic General Population. Fron-tiers in Physiology, Volume 11 - 2020. Retrieved from https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2020.606706
Cristi-Sánchez, I., Danes-Daetz, C., Neira, A., Ferrada, W., Yáñez Díaz, R., & Silvestre Aguirre, R. (2019). Patellar and Achilles Tendon Stiffness in Elite Soccer Players Assessed Using Myotonometric Measurements. Sports Health, 11(2), 157-162. doi:10.1177/1941738118820517
Cushman, D. M., Stokes, D., Vu, L., Corcoran, B., Fredericson, M., Eby, S. F., & Teramoto, M. (2025). Ul-trasound as a predictor of time-loss injury for the patellar tendon, Achilles tendon and plantar fascia in division I collegiate athletes. British Journal of Sports Medicine, 59(4), 241-248.
Dafun JR, P. B., & Suniga, J. P. C. (2025). The Mechanisms of Tendon Weakness and Strengthening Te-chniques: A Systematic Literature Review. Indonesian Journal Of Exercise Therapy And Rehabi-litation, 1(2), 69-77.
Domroes, T., Weidlich, K., Bohm, S., Mersmann, F., & Arampatzis, A. (2024). Personalized tendon loading reduces muscle-tendon imbalances in male adolescent elite athletes. Scandinavian Journal of Medicine & Science in Sports, 34(1), e14555. doi:https://doi.org/10.1111/sms.14555
Domroes, T., Weidlich, K., Bohm, S., Mersmann, F., & Arampatzis, A. (2025). A Personalized Muscle–Tendon Assessment and Exercise Prescription Concept Reduces Muscle–Tendon Imbalances in Female Adolescent Athletes. Sports Medicine - Open, 11(1), 14. doi:10.1186/s40798-025-00817-w
Götschi, T., Hanimann, J., Schulz, N., Huser, S., Held, V., Frey, W. O., . . . Spörri, J. (2022). Patellar Tendon Shear Wave Velocity Is Higher and has Different Regional Patterns in Elite Competitive Alpine Skiers than in Healthy Controls. Frontiers in Bioengineering and Biotechnology, Volume 10 - 2022. Retrieved from https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2022.858610
Hagen, M., Vanmechelen, A., Cloet, E., Sellicaerts, J., Van Welden, K., Verstraete, J., . . . Vanrenterghem, J. (2023). Increasing Step Frequency Reduces Patellofemoral Joint Stress and Patellar Tendon Force Impulse More at Low Running Speed. Medicine & Science in Sports & Exercise, 55, 1555-1563. doi:10.1249/MSS.0000000000003194
Jaén-Carrillo, D., Lawley, J. S., Rubio-Peirotén, A., & Cartón-Llorente, A. (2025). Correlation between patellar tendon morphology and running critical power across different running surfaces. In-ternational Journal of Sports Science & Coaching, 17479541251345777.
Jiménez-Sánchez, C., Ortiz-Lucas, M., Bravo-Esteban, E., Mayoral-Del Moral, O., Herrero-Gállego, P., & Gómez-Soriano, J. (2018). Myotonometry as a measure to detect myofascial trigger points: an inter-rater reliability study. Physiological measurement, 39(11), 115004.
KjÆR, M. (2004). Role of Extracellular Matrix in Adaptation of Tendon and Skeletal Muscle to Mecha-nical Loading. Physiological Reviews, 84(2), 649-698. doi:10.1152/physrev.00031.2003
Lambrianides, Y., Epro, G., Arampatzis, A., & Karamanidis, K. (2024). Evidence of different sensitivity of muscle and tendon to mechano-metabolic stimuli. Scandinavian Journal of Medicine & Scien-ce in Sports, 34(5), e14638. doi:https://doi.org/10.1111/sms.14638
Lazarczuk, S. L., Maniar, N., Opar, D. A., Duhig, S. J., Shield, A., Barrett, R. S., & Bourne, M. N. (2022). Mechanical, Material and Morphological Adaptations of Healthy Lower Limb Tendons to Me-chanical Loading: A Systematic Review and Meta-Analysis. Sports medicine, 52(10), 2405-2429. doi:10.1007/s40279-022-01695-y
Mencel, J., Marusiak, J., Jaskólska, A., Jaskólski, A., & Kisiel-Sajewicz, K. (2021). Impact of the Location of Myometric Measurement Points on Skeletal Muscle Mechanical Properties Outcomes. Mus-cles, Ligaments & Tendons Journal (MLTJ), 11(3).
Monte, A., Skypala, J., Vilimek, D., Juras, V., & Jandačka, D. (2023). Correlations between Achilles ten-don material and structural properties and quantitative magnetic resonance imagining in diffe-rent athletic populations. Journal of biomechanics, 159, 111796. doi:10.1016/j.jbiomech.2023.111796
Morgan, G. E., Martin, R., Williams, L., Pearce, O., & Morris, K. (2018). Objective assessment of stiffness in Achilles tendinopathy: a novel approach using the MyotonPRO. BMJ open sport & exercise medicine, 4(1).
Park, D. Y., & Chou, L. (2006). Stretching for Prevention of Achilles Tendon Injuries: A Review of the Literature. Foot & Ankle International, 27(12), 1086-1095. doi:10.1177/107110070602701215
Pożarowszczyk, B., Pawlaczyk, W., Smoter, M., Zarzycki, A., Mroczek, D., Kumorek, M., . . . Adam, K. (2017). Effects of Karate Fights on Achilles Tendon Stiffness Measured by Myotonometry. J Hum Kinet, 56, 93-97. doi:10.1515/hukin-2017-0026
Roberts, M. D., McCarthy, J. J., Hornberger, T. A., Phillips, S. M., Mackey, A. L., Nader, G. A., . . . Esser, K. A. (2023). Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiological Reviews, 103(4), 2679-2757. doi:10.1152/physrev.00039.2022
Römer, C., Czupajllo, J., Wolfarth, B., Sichting, F., & Legerlotz, K. (2024). The Myometric Assessment of Achilles Tendon and Soleus Muscle Stiffness before and after a Standardized Exercise Test in Elite Female Volleyball and Handball Athletes—A Quasi-Experimental Study. Journal of Clinical Medicine, 13. doi:10.3390/jcm13113243
Römer, C., Zessin, E., Czupajllo, J., Fischer, T., Wolfarth, B., & Lerchbaumer, M. H. (2023). Effect of ant-hropometric parameters on achilles tendon stiffness of professional athletes measured by shear wave elastography. Journal of Clinical Medicine, 12(8), 2963.
Sasajima, S., & Kubo, K. (2024). Influence of preconditioning on morphological and mechanical proper-ties of human Achilles tendon in vivo. Journal of biomechanics, 170, 112168. doi:https://doi.org/10.1016/j.jbiomech.2024.112168
Schmidt, D., Verderber, L., Germano, A., & Nitzsche, N. (2025). Correlations Between Achilles Tendon Stiffness and Jumping Performance: A Comparative Study of Soccer and Basketball Athletes. Journal of Functional Morphology and Kinesiology, 10. doi:10.3390/jfmk10020112
Seymore, K. D., Hanlon, S. L., Pohlig, R. T., Elliott, D. M., & Silbernagel, K. G. (2025). Relationship Bet-ween Structure and Age in Healthy Achilles Tendons. Journal of Orthopaedic Research®.
Stańczak, M., Kacprzak, B., & Gawda, P. (2024). Tendon Cell Biology: Effect of Mechanical Loading. Cell Physiol Biochem, 58(6), 677-701. doi:10.33594/000000743
Szajkowski, S., Pasek, J., Dwornik, M., & Cieślar, G. (2024). Mechanical properties of the patellar ten-don in weightlifting athletes–the utility of myotonometry. Adaptations of patellar tendon to mechanical loading. Acta of Bioengineering and Biomechanics, 26(1), 153-164.
Trybulski, R., Kużdżał, A., Wilk, M., Więckowski, J., Fostiak, K., & Muracki, J. (2024). Reliability of MyotonPro in measuring the biomechanical properties of the quadriceps femoris muscle in people with different levels and types of motor preparation. Frontiers in Sports and Active Li-ving, 6, 1453730.
Tsai, M.-S., Domroes, T., Pentidis, N., Koschinski, S., Schroll, A., Bohm, S., . . . Mersmann, F. (2024). Ef-fect of the temporal coordination and volume of cyclic mechanical loading on human Achilles tendon adaptation in men. Scientific Reports, 14(1), 6875. doi:10.1038/s41598-024-56840-6
Vicentini, J. R. T., Mercer, R. W., & Simeone, F. J. (2025). Basketball: Biomechanics and Imaging Fin-dings of Common Injuries. Semin Musculoskelet Radiol, 29(04), 559-568. doi:10.1055/s-0045-1809163
Volesky, K., Novak, J., Janek, M., Katolicky, J., Tufano, J. J., Steffl, M., . . . Vetrovsky, T. (2025). Assessing the Test-Retest Reliability of MyotonPRO for Measuring Achilles Tendon Stiffness. Journal of Functional Morphology and Kinesiology, 10(1), 83.
Wang, D., Li, F., Baker, J., Zhang, P., Lu, Z., Yu, J., & Liang, M. (2024). The effect of simulated basketball game load on patellar tendon load during stop-jump movement. Molecular & Cellular Biomechanics. doi:10.62617/mcb292
Wang, D., Wang, Z., Yang, M., Qu, K., Mao, X., Yang, X., . . . Fang, W. (2025). Stiffness characteristics of the lower extremities in Women’s Chinese Basketball Association competition athletes: norma-tive values and position differences. Frontiers in Bioengineering and Biotechnology, 13, 1527730.
Williams, B., & Gyer, G. (2025). Tendons under load: Understanding pathology and progression. Journal of Musculoskeletal Surgery and Research, 9(3), 393-402.
Young, F. C., Cristi-Sánchez, I., Danes-Daetz, C., Monckeberg, J. E., & Aguirre, R. S. (2018). Patellar Ten-don Stiffness in Elite Breakdancers Assessed by Myotonometric Measurement. Journal of Dance Medicine & Science, 22(4), 179-183. doi:10.12678/1089-313X.22.4.179
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sebastián Sepúlveda-González, Juan Tejo-Cárdenas, Mauricio Araya-Ibacache, Luis Mardones-Delgado, Carolina Pardo-Tamayo, Ciro José Brito, Esteban Aedo-Muñoz, Alejandro Bustamante-Garrido

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.