Adaptações viscoelásticas dos tendões calcâneo e rotuliano em atletas de elite: um estudo de miotonometria cross-sport
DOI:
https://doi.org/10.47197/retos.v73.117202Palavras-chave:
Biomecânica, desempenho desportivo, atletas de elite, Myoton, rigidez, tendão de Aquiles, ligamento rotulianoResumo
Objectivo: Analisar e comparar as propriedades viscoelásticas dos tendões calcâneo e rotuliano em atletas de elite de diferentes modalidades desportivas, determinando se existem diferenças significativas atribuíveis à carga mecânica específica de cada modalidade.
Métodos: Neste estudo transversal, um total de 105 atletas de elite (33 mulheres; 72 homens) de onze modalidades desportivas diferentes (ciclismo de estrada, hóquei em patins, karaté, atletismo, voleibol, taekwondo, patinagem de velocidade, judo, tiro ao arco, andebol e boxe) foram avaliados num centro desportivo nacional de alto rendimento. As propriedades viscoelásticas (rigidez, relaxamento, diminuição, entre outras) de ambos os tendões foram medidas bilateralmente através de um aparelho de miometria portátil (Myoton Pro®, Myoton, Tallinn, Estónia). O desfecho primário foi a rigidez do tendão.
Resultados: Foram encontradas diferenças significativas em todas as variáveis medidas para ambos os tendões (p < 0,001) entre os desportos, exceto para o parâmetro de decremento no tendão rotuliano (p = 0,45). O tendão calcâneo demonstrou uma maior adaptação específica ao desporto, tendo a rigidez apresentado o maior número de diferenças entre as modalidades (29 comparações significativas entre pares). O relaxamento foi o parâmetro mais variável no tendão rotuliano (9 comparações significativas).
Conclusões: Os resultados demonstram que as propriedades viscoelásticas dos tendões calcâneo e rotuliano diferem significativamente consoante o desporto praticado pelos atletas de elite. Isto sugere que a carga mecânica específica a longo prazo desempenha um papel crucial na adaptação do tendão, levando à especialização funcional. Embora o desenho transversal impeça inferências causais, estes resultados fornecem dados de referência valiosos para prescrições de treino e estratégias de prevenção de lesões adaptadas ao desporto.
Referências
Althoff, A. D., Vance, K., Plain, M., Reeves, R. A., Pierce, J., Gwathmey, F. W., & Werner, B. C. (2024). Evaluation of achilles tendon stiffness as measured by shear wave elastography in female co-llege athletes compared with nonathletes. Sports Health, 16(1), 12-18.
Bravo-Sánchez, A., Abián, P., Jimenez, F., & Abián-Vicén, J. (2021). Structural and mechanical proper-ties of the Achilles tendon in senior badminton players: Operated vs. non-injured tendons. Cli-nical biomechanics, 85, 105366.
Bravo-Sánchez, A., Abián, P., Jiménez, F., & Abián-Vicén, J. (2019). Myotendinous asymmetries derived from the prolonged practice of badminton in professional players. PLoS One, 14(9), e0222190.
Brughelli, M., & Cronin, J. (2008). A review of research on the mechanical stiffness in running and jum-ping: methodology and implications. Scandinavian Journal of Medicine & Science in Sports, 18(4), 417-426. doi:https://doi.org/10.1111/j.1600-0838.2008.00769.x
Chalatzoglidis, G., Arabatzi, F., & Christou, E. A. (2021). Motor Control and Achilles Tendon Adaptation in Adolescence: Effects of Sport Participation and Maturity. J Hum Kinet, 76, 101-116. doi:10.2478/hukin-2021-0003
Chang, T.-T., Li, Z., Wang, X.-Q., & Zhang, Z.-J. (2020). Stiffness of the Gastrocnemius–Achilles Tendon Complex Between Amateur Basketball Players and the Non-athletic General Population. Fron-tiers in Physiology, Volume 11 - 2020. Retrieved from https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2020.606706
Cristi-Sánchez, I., Danes-Daetz, C., Neira, A., Ferrada, W., Yáñez Díaz, R., & Silvestre Aguirre, R. (2019). Patellar and Achilles Tendon Stiffness in Elite Soccer Players Assessed Using Myotonometric Measurements. Sports Health, 11(2), 157-162. doi:10.1177/1941738118820517
Cushman, D. M., Stokes, D., Vu, L., Corcoran, B., Fredericson, M., Eby, S. F., & Teramoto, M. (2025). Ul-trasound as a predictor of time-loss injury for the patellar tendon, Achilles tendon and plantar fascia in division I collegiate athletes. British Journal of Sports Medicine, 59(4), 241-248.
Dafun JR, P. B., & Suniga, J. P. C. (2025). The Mechanisms of Tendon Weakness and Strengthening Te-chniques: A Systematic Literature Review. Indonesian Journal Of Exercise Therapy And Rehabi-litation, 1(2), 69-77.
Domroes, T., Weidlich, K., Bohm, S., Mersmann, F., & Arampatzis, A. (2024). Personalized tendon loading reduces muscle-tendon imbalances in male adolescent elite athletes. Scandinavian Journal of Medicine & Science in Sports, 34(1), e14555. doi:https://doi.org/10.1111/sms.14555
Domroes, T., Weidlich, K., Bohm, S., Mersmann, F., & Arampatzis, A. (2025). A Personalized Muscle–Tendon Assessment and Exercise Prescription Concept Reduces Muscle–Tendon Imbalances in Female Adolescent Athletes. Sports Medicine - Open, 11(1), 14. doi:10.1186/s40798-025-00817-w
Götschi, T., Hanimann, J., Schulz, N., Huser, S., Held, V., Frey, W. O., . . . Spörri, J. (2022). Patellar Tendon Shear Wave Velocity Is Higher and has Different Regional Patterns in Elite Competitive Alpine Skiers than in Healthy Controls. Frontiers in Bioengineering and Biotechnology, Volume 10 - 2022. Retrieved from https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2022.858610
Hagen, M., Vanmechelen, A., Cloet, E., Sellicaerts, J., Van Welden, K., Verstraete, J., . . . Vanrenterghem, J. (2023). Increasing Step Frequency Reduces Patellofemoral Joint Stress and Patellar Tendon Force Impulse More at Low Running Speed. Medicine & Science in Sports & Exercise, 55, 1555-1563. doi:10.1249/MSS.0000000000003194
Jaén-Carrillo, D., Lawley, J. S., Rubio-Peirotén, A., & Cartón-Llorente, A. (2025). Correlation between patellar tendon morphology and running critical power across different running surfaces. In-ternational Journal of Sports Science & Coaching, 17479541251345777.
Jiménez-Sánchez, C., Ortiz-Lucas, M., Bravo-Esteban, E., Mayoral-Del Moral, O., Herrero-Gállego, P., & Gómez-Soriano, J. (2018). Myotonometry as a measure to detect myofascial trigger points: an inter-rater reliability study. Physiological measurement, 39(11), 115004.
KjÆR, M. (2004). Role of Extracellular Matrix in Adaptation of Tendon and Skeletal Muscle to Mecha-nical Loading. Physiological Reviews, 84(2), 649-698. doi:10.1152/physrev.00031.2003
Lambrianides, Y., Epro, G., Arampatzis, A., & Karamanidis, K. (2024). Evidence of different sensitivity of muscle and tendon to mechano-metabolic stimuli. Scandinavian Journal of Medicine & Scien-ce in Sports, 34(5), e14638. doi:https://doi.org/10.1111/sms.14638
Lazarczuk, S. L., Maniar, N., Opar, D. A., Duhig, S. J., Shield, A., Barrett, R. S., & Bourne, M. N. (2022). Mechanical, Material and Morphological Adaptations of Healthy Lower Limb Tendons to Me-chanical Loading: A Systematic Review and Meta-Analysis. Sports medicine, 52(10), 2405-2429. doi:10.1007/s40279-022-01695-y
Mencel, J., Marusiak, J., Jaskólska, A., Jaskólski, A., & Kisiel-Sajewicz, K. (2021). Impact of the Location of Myometric Measurement Points on Skeletal Muscle Mechanical Properties Outcomes. Mus-cles, Ligaments & Tendons Journal (MLTJ), 11(3).
Monte, A., Skypala, J., Vilimek, D., Juras, V., & Jandačka, D. (2023). Correlations between Achilles ten-don material and structural properties and quantitative magnetic resonance imagining in diffe-rent athletic populations. Journal of biomechanics, 159, 111796. doi:10.1016/j.jbiomech.2023.111796
Morgan, G. E., Martin, R., Williams, L., Pearce, O., & Morris, K. (2018). Objective assessment of stiffness in Achilles tendinopathy: a novel approach using the MyotonPRO. BMJ open sport & exercise medicine, 4(1).
Park, D. Y., & Chou, L. (2006). Stretching for Prevention of Achilles Tendon Injuries: A Review of the Literature. Foot & Ankle International, 27(12), 1086-1095. doi:10.1177/107110070602701215
Pożarowszczyk, B., Pawlaczyk, W., Smoter, M., Zarzycki, A., Mroczek, D., Kumorek, M., . . . Adam, K. (2017). Effects of Karate Fights on Achilles Tendon Stiffness Measured by Myotonometry. J Hum Kinet, 56, 93-97. doi:10.1515/hukin-2017-0026
Roberts, M. D., McCarthy, J. J., Hornberger, T. A., Phillips, S. M., Mackey, A. L., Nader, G. A., . . . Esser, K. A. (2023). Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiological Reviews, 103(4), 2679-2757. doi:10.1152/physrev.00039.2022
Römer, C., Czupajllo, J., Wolfarth, B., Sichting, F., & Legerlotz, K. (2024). The Myometric Assessment of Achilles Tendon and Soleus Muscle Stiffness before and after a Standardized Exercise Test in Elite Female Volleyball and Handball Athletes—A Quasi-Experimental Study. Journal of Clinical Medicine, 13. doi:10.3390/jcm13113243
Römer, C., Zessin, E., Czupajllo, J., Fischer, T., Wolfarth, B., & Lerchbaumer, M. H. (2023). Effect of ant-hropometric parameters on achilles tendon stiffness of professional athletes measured by shear wave elastography. Journal of Clinical Medicine, 12(8), 2963.
Sasajima, S., & Kubo, K. (2024). Influence of preconditioning on morphological and mechanical proper-ties of human Achilles tendon in vivo. Journal of biomechanics, 170, 112168. doi:https://doi.org/10.1016/j.jbiomech.2024.112168
Schmidt, D., Verderber, L., Germano, A., & Nitzsche, N. (2025). Correlations Between Achilles Tendon Stiffness and Jumping Performance: A Comparative Study of Soccer and Basketball Athletes. Journal of Functional Morphology and Kinesiology, 10. doi:10.3390/jfmk10020112
Seymore, K. D., Hanlon, S. L., Pohlig, R. T., Elliott, D. M., & Silbernagel, K. G. (2025). Relationship Bet-ween Structure and Age in Healthy Achilles Tendons. Journal of Orthopaedic Research®.
Stańczak, M., Kacprzak, B., & Gawda, P. (2024). Tendon Cell Biology: Effect of Mechanical Loading. Cell Physiol Biochem, 58(6), 677-701. doi:10.33594/000000743
Szajkowski, S., Pasek, J., Dwornik, M., & Cieślar, G. (2024). Mechanical properties of the patellar ten-don in weightlifting athletes–the utility of myotonometry. Adaptations of patellar tendon to mechanical loading. Acta of Bioengineering and Biomechanics, 26(1), 153-164.
Trybulski, R., Kużdżał, A., Wilk, M., Więckowski, J., Fostiak, K., & Muracki, J. (2024). Reliability of MyotonPro in measuring the biomechanical properties of the quadriceps femoris muscle in people with different levels and types of motor preparation. Frontiers in Sports and Active Li-ving, 6, 1453730.
Tsai, M.-S., Domroes, T., Pentidis, N., Koschinski, S., Schroll, A., Bohm, S., . . . Mersmann, F. (2024). Ef-fect of the temporal coordination and volume of cyclic mechanical loading on human Achilles tendon adaptation in men. Scientific Reports, 14(1), 6875. doi:10.1038/s41598-024-56840-6
Vicentini, J. R. T., Mercer, R. W., & Simeone, F. J. (2025). Basketball: Biomechanics and Imaging Fin-dings of Common Injuries. Semin Musculoskelet Radiol, 29(04), 559-568. doi:10.1055/s-0045-1809163
Volesky, K., Novak, J., Janek, M., Katolicky, J., Tufano, J. J., Steffl, M., . . . Vetrovsky, T. (2025). Assessing the Test-Retest Reliability of MyotonPRO for Measuring Achilles Tendon Stiffness. Journal of Functional Morphology and Kinesiology, 10(1), 83.
Wang, D., Li, F., Baker, J., Zhang, P., Lu, Z., Yu, J., & Liang, M. (2024). The effect of simulated basketball game load on patellar tendon load during stop-jump movement. Molecular & Cellular Biomechanics. doi:10.62617/mcb292
Wang, D., Wang, Z., Yang, M., Qu, K., Mao, X., Yang, X., . . . Fang, W. (2025). Stiffness characteristics of the lower extremities in Women’s Chinese Basketball Association competition athletes: norma-tive values and position differences. Frontiers in Bioengineering and Biotechnology, 13, 1527730.
Williams, B., & Gyer, G. (2025). Tendons under load: Understanding pathology and progression. Journal of Musculoskeletal Surgery and Research, 9(3), 393-402.
Young, F. C., Cristi-Sánchez, I., Danes-Daetz, C., Monckeberg, J. E., & Aguirre, R. S. (2018). Patellar Ten-don Stiffness in Elite Breakdancers Assessed by Myotonometric Measurement. Journal of Dance Medicine & Science, 22(4), 179-183. doi:10.12678/1089-313X.22.4.179
Downloads
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2025 Sebastián Sepúlveda-González, Juan Tejo-Cárdenas, Mauricio Araya-Ibacache, Luis Mardones-Delgado, Carolina Pardo-Tamayo, Ciro José Brito, Esteban Aedo-Muñoz, Alejandro Bustamante-Garrido

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e assegurar a revista o direito de ser a primeira publicação da obra como licenciado sob a Licença Creative Commons Attribution que permite que outros para compartilhar o trabalho com o crédito de autoria do trabalho e publicação inicial nesta revista.
- Os autores podem estabelecer acordos adicionais separados para a distribuição não-exclusiva da versão do trabalho publicado na revista (por exemplo, a um repositório institucional, ou publicá-lo em um livro), com reconhecimento de autoria e publicação inicial nesta revista.
- É permitido e os autores são incentivados a divulgar o seu trabalho por via electrónica (por exemplo, em repositórios institucionais ou no seu próprio site), antes e durante o processo de envio, pois pode gerar alterações produtivas, bem como a uma intimação mais Cedo e mais do trabalho publicado (Veja O Efeito do Acesso Livre) (em Inglês).
Esta revista é a "política de acesso aberto" de Boai (1), apoiando os direitos dos usuários de "ler, baixar, copiar, distribuir, imprimir, pesquisar, ou link para os textos completos dos artigos". (1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess