Hypoxia and venous occlusion improve muscular performance but no effect on growth hormone in athletes

Authors

  • Kittamook La-bantao Exercise and Sport Sciences Program, Multidisciplinary Program, Graduate School, Khon Kaen University, (Thailand)
  • Apiwan Manimmanakorn Khon Kaen University https://orcid.org/0000-0002-0927-9453
  • Michael John Hamlin Department of Tourism, Sport and Society, Lincoln University, (New Zealand)
  • Nuttaset Manimmanakorn Department of Rehabilitation Medicine, Faculty of Medicine, Khon Kaen University, (Thailand)
  • Qinshan Huang College of Sports and Arts, Jiang Xi University of Science and Technology, Ganzhou, (China)
  • Chaiyawat Namboonlue Sport and Exercise Sciences Program, Faculty of Sciences, Ubon Ratchathani Rajabhat University, (Thailand)
  • Chiraphorn Khaengkhan Sport sciences Program, Faculty of Sciences, Udon Thani Rajabhat University, (Thailand)
  • Peeraporn Nithisup Department of Physical Therapy, Faculty of Allied Health Sciences, Nakon Ratchasima College, (Thailand)

DOI:

https://doi.org/10.47197/retos.v73.117374

Keywords:

Hypoxic training, low-load resistance training, hypertrophy, blood lactate, venous occlusion

Abstract

Introduction: Resistance training enhances muscle strength and size; however, high-load exercise (>85% 1RM) may increase the risk of injury. Low-load resistance training with hypoxia or blood flow restriction (BFR) offers safer alternatives, although comparative data are limited.

Objective: To examine the effects of hypoxia and BFR on resting growth hormone (GH) levels after five weeks of low-load resistance training.

Methods: Thirty male athletes (19–24 years) were assigned to three groups: RT (50% 1RM), RT + HPX (50% 1RM under hypoxia, FiO₂ = 0.137), and RT + BFR (50% 1RM with BFR). Participants performed knee extension and flexion (3 sets × 15 reps, 1-min rest) three times weekly for five weeks. Muscle thickness, strength, resting GH, and blood lactate levels were measured before and after training.

Results: After training, RT + HPX and RT + BFR showed significant increases in rectus femoris and biceps femoris thickness. Strength improved in all groups, with knee extension strength higher in the RT+HPX (30.9 ± 16.3%, p = 0.047) than RT (16.1 ± 7.3%). The resting GH levels did not differ significantly between the groups (p > 0.05). Post-exercise lactate increased significantly only in the RT+BFR (68.7 ± 57.2%, p = 0.018).

Conclusion: Low-load training with hypoxia or BFR enhances muscle hypertrophy and strength, and hypoxia produces greater strength gain. Resting GH levels appear to be unrelated to these adaptations, suggesting that further studies are needed to clarify the underlying mechanisms.

References

Aghaei, F., Shadmehri, S., Feizollahi, F., Zargani, M., & Arabzadeh, E. (2023). Short-term effects of isometric exercise with local and systemic hypoxia and normoxia on fatigue and muscle fun-ction in trained men. Sport Sciences for Health, 19(2), 553–563. https://doi.org/10.1007/s11332-022-00917-0

Bahamondes-Avila, C., Curilem Gatica, C., Bustos Medina, L., Berral De La Rosa, F., & Salazar, L. A. (2024). Abordaje fisioterapéutico del ejercicio con restricción parcial del flujo sanguíneo. Revisión nar-rativa (Physiotherapeutic approach to exercise with partial restriction of blood flow. Narrative review). Retos, 58, 617–632. https://doi.org/10.47197/retos.v58.99878

Brzycki, M. (1993). Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. Journal of Phys-ical Education, Recreation & Dance, 64(1), 88–90. https://doi.org/10.1080/07303084.1993.10606684

Centner, C., Jerger, S., Lauber, B., Seynnes, O., Friedrich, T., Lolli, D., Gollhofer, A., & König, D. (2022). Low-Load Blood Flow Restriction and High-Load Resistance Training Induce Comparable Changes in Patellar Tendon Properties. Medicine & Science in Sports & Exercise, 54(4), 582–589. https://doi.org/10.1249/MSS.0000000000002824

Chang, H., Yan, J., Lu, G., Chen, B., & Zhang, J. (2023). Muscle strength adaptation between high-load re-sistance training versus low-load blood flow restriction training with different cuff pressure characteristics: A systematic review and meta-analysis. Frontiers in Physiology, 14, 1244292. https://doi.org/10.3389/fphys.2023.1244292

Chikani, V., & Ho, K. K. Y. (2014). Action of GH on skeletal muscle function: Molecular and metabolic mechanisms. Journal of Molecular Endocrinology, 52(1), R107–R123. https://doi.org/10.1530/JME-13-0208

Colapietro, M. A., Lee, J. Z., & Vairo, G. L. (2024). Survey of Blood Flow Restriction Training Applications in Sports Medicine and Performance Practice Across North America. Journal of Strength & Con-ditioning Research, 38(5), 856–863. https://doi.org/10.1519/JSC.0000000000004702

Davis, B. H., Stampley, J. E., Granger, J., Scott, M. C., Allerton, T. D., Johannsen, N. M., Spielmann, G., & Ir-ving, B. A. (2024). Impact of low‐load resistance exercise with and without blood flow re-striction on muscle strength, endurance, and oxidative capacity: A pilot study. Physiological Re-ports, 12(12), e16041. https://doi.org/10.14814/phy2.16041

Fashi, M., & Ahmadizad, S. (2021). Short-term hypoxic resistance training improves muscular perfor-mance in untrained males. Science & Sports, 36(4), 312.e1-312.e6. https://doi.org/10.1016/j.scispo.2020.10.003

Feriche, B., García-Ramos, A., Morales-Artacho, A. J., & Padial, P. (2017). Resistance Training Using Dif-ferent Hypoxic Training Strategies: A Basis for Hypertrophy and Muscle Power Development. Sports Medicine - Open, 3(1), 12. https://doi.org/10.1186/s40798-017-0078-z

Friedmann, B., Kinscherf, R., Borisch, S., Richter, G., Bärtsch, P., & Billeter, R. (2003). Effects of low-resistance/high-repetition strength training in hypoxia on muscle structure and gene expres-sion. Pflügers Archiv - European Journal of Physiology, 446(6), 742–751. https://doi.org/10.1007/s00424-003-1133-9

Gamonales, J. M., Rojas-Valverde, D., Vásquez, J., Martínez-Guardado, I., Azofeifa-Mora, C., Sánchez-Ureña, B., & Ibáñez, S. J. (2023). An Update to a Comprehensive Assessment of the Methods and Effectiveness of Resistance Training in Normobaric Hypoxia for the Development of Strength and Muscular Hypertrophy. Applied Sciences, 13(2), 1078. https://doi.org/10.3390/app13021078

Godfrey, R. J., Madgwick, Z., & Whyte, G. P. (2003). The Exercise-Induced Growth Hormone Response in Athletes: Sports Medicine, 33(8), 599–613. https://doi.org/10.2165/00007256-200333080-00005

Haeffner, A., Déas, O., Mollereau, B., Estaquier, J., Mignon, A., Haeffner-Cavaillon, N., Charpentier, B., Senik, A., & Hirsch, F. (1999). Growth hormone prevents human monocytic cells from Fas-mediated apoptosis by up-regulating Bcl-2 expression. European Journal of Immunology, 29(1), 334–344. https://doi.org/10.1002/(SICI)1521-4141(199901)29:01<334::AID-IMMU334>3.0.CO;2-S

Hamlin, M. J., & Ainslie, P. N. (2010). Prediction of acute mountain sickness and sleep apnea in subjects travelling to and training at altitude [Lincoln University]. https://researcharchive.lincoln.ac.nz/server/api/core/bitstreams/45f491a5-e568-4fda-aeaa-3dd20426ab5e/content

Huang, Z., Yang, S., Li, C., Xie, X., & Wang, Y. (2023). The effects of intermittent hypoxic training on the aerobic capacity of exercisers: A systemic review and meta-analysis. BMC Sports Science, Medi-cine and Rehabilitation, 15(1), 174. https://doi.org/10.1186/s13102-023-00784-3

Hughes, L., Paton, B., Rosenblatt, B., Gissane, C., & Patterson, S. D. (2017). Blood flow restriction training in clinical musculoskeletal rehabilitation: A systematic review and meta-analysis. British Jour-nal of Sports Medicine, 51(13), 1003–1011. https://doi.org/10.1136/bjsports-2016-097071

Iversen, E., Røstad, V., & Larmo, A. (2016). Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. Journal of Sport and Health Science, 5(1), 115–118. https://doi.org/10.1016/j.jshs.2014.12.005

Jagim, A. R., Schuler, J., Szymanski, E., Khurelbaatar, C., Carpenter, M., Fields, J. B., & Jones, M. T. (2024). Acute Responses of Low-Load Resistance Exercise with Blood Flow Restriction. Journal of Functional Morphology and Kinesiology, 9(4), 254. https://doi.org/10.3390/jfmk9040254

Jiang, G., Qin, S., Yan, B., & Girard, O. (2024). Metabolic and hormonal responses to acute high-load re-sistance exercise in normobaric hypoxia using a saturation clamp. Frontiers in Physiology, 15, 1445229. https://doi.org/10.3389/fphys.2024.1445229

Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of Resistance Training: Progression and Exer-cise Prescription: Medicine & Science in Sports & Exercise, 36(4), 674–688. https://doi.org/10.1249/01.MSS.0000121945.36635.61

Kraemer, W. J., Ratamess, N. A., Flanagan, S. D., Shurley, J. P., Todd, J. S., & Todd, T. C. (2017). Under-standing the Science of Resistance Training: An Evolutionary Perspective. Sports Medicine, 47(12), 2415–2435. https://doi.org/10.1007/s40279-017-0779-y

Lauber, B., König, D., Gollhofer, A., & Centner, C. (2021). Isometric blood flow restriction exercise: Acute physiological and neuromuscular responses. BMC Sports Science, Medicine and Rehabilitation, 13(1), 12. https://doi.org/10.1186/s13102-021-00239-7

Laurentino, G., Loenneke, J., Ugrinowitsch, C., Aoki, M., Soares, A., Roschel, H., & Tricoli, V. (2022). Blood-Flow-Restriction-Training-Induced Hormonal Response is not Associated with Gains in Muscle Size and Strength. Journal of Human Kinetics, 83, 235–243. https://doi.org/10.2478/hukin-2022-0095

Lixandrão, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceição, M. S., Damas, F., Libardi, C. A., & Roschel, H. (2018). Magnitude of Muscle Strength and Mass Adaptations Between High-Load Re-sistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Re-striction: A Systematic Review and Meta-Analysis. Sports Medicine, 48(2), 361–378. https://doi.org/10.1007/s40279-017-0795-y

Loenneke, J. P., Wilson, G. J., & Wilson, J. M. (2010). A Mechanistic Approach to Blood Flow Occlusion. International Journal of Sports Medicine, 31(01), 1–4. https://doi.org/10.1055/s-0029-1239499

Machek, S. B., Harris, D. R., Zawieja, E. E., Heileson, J. L., Wilburn, D. T., Radziejewska, A., Chmurzynska, A., Cholewa, J. M., & Willoughby, D. S. (2022). The Impacts of Combined Blood Flow Restriction Training and Betaine Supplementation on One-Leg Press Muscular Endurance, Exercise-Associated Lactate Concentrations, Serum Metabolic Biomarkers, and Hypoxia-Inducible Fac-tor-1α Gene Expression. Nutrients, 14(23), 5040. https://doi.org/10.3390/nu14235040

Manimmanakorn, A., Hamlin, M. J., Ross, J. J., Taylor, R., & Manimmanakorn, N. (2013). Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. Journal of Science and Medicine in Sport, 16(4), 337–342. https://doi.org/10.1016/j.jsams.2012.08.009

Martínez‐Guardado, I., Ramos‐Campo, D. J., Olcina, G. J., Rubio‐Arias, J. A., Chung, L. H., Marín‐Cascales, E., Alcaraz, P. E., & Timón, R. (2019). Effects of high‐intensity resistance circuit‐based training in hypoxia on body composition and strength performance. European Journal of Sport Science, 19(7), 941–951. https://doi.org/10.1080/17461391.2018.1564796

Mennitti, C., Farina, G., Imperatore, A., De Fonzo, G., Gentile, A., La Civita, E., Carbone, G., De Simone, R. R., Di Iorio, M. R., Tinto, N., Frisso, G., D’Argenio, V., Lombardo, B., Terracciano, D., Crescioli, C., & Scudiero, O. (2024). How Does Physical Activity Modulate Hormone Responses? Biomolecules, 14(11), 1418. https://doi.org/10.3390/biom14111418

Namboonlue, C., Hamlin, M. J., Sirasaporn, P., Manimmanakorn, N., Wonnabussapawich, P., Thuwakum, W., Sumethanurakkhakun, W., & Manimmanakorn, A. (2020). Optimal degree of hypoxia com-bined with low-load resistance training for muscle strength and thickness in athletes. Journal of Physical Education and Sport, 2020(02). https://doi.org/10.7752/jpes.2020.02119

Nitzsche, N., Schulze, R., Weigand, F., Hummer, N., & Schulz, H. (2018). Comparison of an acute re-sistance training on the lactateconcentration with and without blood flow restriction at differ-ent loads. Deutsche Zeitschrift Für Sportmedizin, 2018(11), 337–343. https://doi.org/10.5960/dzsm.2018.351

Pearson, S. J., & Hussain, S. R. (2015). A Review on the Mechanisms of Blood-Flow Restriction Re-sistance Training-Induced Muscle Hypertrophy. Sports Medicine, 45(2), 187–200. https://doi.org/10.1007/s40279-014-0264-9

Radovanović, G., Bohm, S., Peper, K. K., Arampatzis, A., & Legerlotz, K. (2022). Evidence-Based High-Loading Tendon Exercise for 12 Weeks Leads to Increased Tendon Stiffness and Cross-Sectional Area in Achilles Tendinopathy: A Controlled Clinical Trial. Sports Medicine - Open, 8(1), 149. https://doi.org/10.1186/s40798-022-00545-5

Ramadhan, N. A., Tinduh, D., Nugraheni, N., Subadi, I., Narasinta, I., & Melaniani, S. (2025). Vascular En-dhothelial Growth Factor levels in medium-intensity versus low-intensity exercise with blood flow restriction in elderly women. Retos, 64, 254–262. https://doi.org/10.47197/retos.v64.110307

Schoenfeld, B. J., Grgic, J., Van Every, D. W., & Plotkin, D. L. (2021). Loading Recommendations for Mus-cle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continu-um. Sports, 9(2), 32. https://doi.org/10.3390/sports9020032

Thuwakum, W., Hamlin, M. J., Manimmanakorn, N., Leelayuwat, N., Wonnabussapawich, P., Boobpa-chat, D., & Mannimmanakorn, A. (2017). Low-load resistance training with hypoxia mimics tra-ditional strength training in team sport athletes. Journal of Physical Education and Sport, 17(01). https://doi.org/10.7752/jpes.2017.01036

Törpel, A., Peter, B., & Schega, L. (2020). Effect of Resistance Training Under Normobaric Hypoxia on Physical Performance, Hematological Parameters, and Body Composition in Young and Older People. Frontiers in Physiology, 11, 335. https://doi.org/10.3389/fphys.2020.00335

Van Doorslaer De Ten Ryen, S., Warnier, G., Gnimassou, O., Belhaj, M. R., Benoit, N., Naslain, D., Brook, M. S., Smith, K., Wilkinson, D. J., Nielens, H., Atherton, P. J., Francaux, M., & Deldicque, L. (2021). Higher strength gain after hypoxic vs normoxic resistance training despite no changes in muscle thickness and fractional protein synthetic rate. The FASEB Journal, 35(8), e21773. https://doi.org/10.1096/fj.202100654RR

Wideman, L., Weltman, J. Y., Hartman, M. L., Veldhuis, J. D., & Weltman, A. (2002). Growth Hormone Release During Acute and Chronic Aerobic and Resistance Exercise: Recent Findings. Sports Medicine, 32(15), 987–1004. https://doi.org/10.2165/00007256-200232150-00003

Yan, B., Lai, X., Yi, L., Wang, Y., & Hu, Y. (2016). Effects of Five-Week Resistance Training in Hypoxia on Hormones and Muscle Strength. Journal of Strength and Conditioning Research, 30(1), 184–193. https://doi.org/10.1519/JSC.0000000000001056

Downloads

Published

10-11-2025

Issue

Section

Original Research Article

How to Cite

La-bantao, K., Manimmanakorn, A., Manimmanakorn, N., Huang, Q., Namboonlue, C., Khaengkhan, C., & Nithisup, P. (2025). Hypoxia and venous occlusion improve muscular performance but no effect on growth hormone in athletes. Retos, 73, 1076-1089. https://doi.org/10.47197/retos.v73.117374