A hipoxia e a oclusão venosa melhoram o desempenho muscular, mas não têm qualquer efeito sobre a hormona do crescimento em atletas.
DOI:
https://doi.org/10.47197/retos.v73.117374Palavras-chave:
Treino hipóxico, treino de resistência com baixa carga, hipertrofia, lactato sanguíneo, oclusão venosaResumo
Introdução: O treino de resistência melhora a força e o tamanho muscular, mas métodos com cargas elevadas (>85% de 1RM) podem aumentar o risco de lesão. O treino com cargas baixas, associado à hipoxia ou restrição do fluxo sanguíneo (RFS), oferece uma alternativa mais segura, embora as evidências comparativas sejam limitadas.
Objectivo: Analisar os efeitos da hipoxia e da RFS nos níveis de hormona de crescimento (GH) em repouso após cinco semanas de treino de resistência com cargas baixas.
Metodologia: Trinta atletas do sexo masculino (19-24 anos) foram aleatoriamente alocados a três grupos: RT (50% de 1RM), RT+HPX (50% de 1RM com hipoxia, FiO₂ 0,137) e RT+RFS (50% de 1RM com RFS). Realizaram extensões e flexões de joelhos (3 séries de 15 repetições, 1 min de descanso) três vezes por semana, durante cinco semanas. A espessura e a força muscular, o GH em repouso e o lactato sanguíneo foram avaliados antes e após o treino.
Resultados: Os grupos RT+HPX e RT+BFR apresentaram aumentos significativos da espessura dos músculos recto femoral e bíceps femoral. A força melhorou em todos os grupos, com maior extensão do joelho no grupo RT+HPX (30,9 ± 16,3%, p=0,047) em comparação com o grupo RT (16,1 ± 7,3%). Os níveis de GH em repouso não diferiram entre os grupos (p>0,05). O lactato aumentou significativamente apenas no grupo RT+BFR (68,7 ± 57,2%, p=0,018).
Conclusões: O treino com baixa carga, hipóxia ou restrição do fluxo sanguíneo (BFR), melhora a força e a hipertrofia muscular, sendo a hipóxia mais eficaz para o aumento da força. Mais investigação é necessária para esclarecer o papel do GH em repouso nestas adaptações.
Referências
Aghaei, F., Shadmehri, S., Feizollahi, F., Zargani, M., & Arabzadeh, E. (2023). Short-term effects of isometric exercise with local and systemic hypoxia and normoxia on fatigue and muscle fun-ction in trained men. Sport Sciences for Health, 19(2), 553–563. https://doi.org/10.1007/s11332-022-00917-0
Bahamondes-Avila, C., Curilem Gatica, C., Bustos Medina, L., Berral De La Rosa, F., & Salazar, L. A. (2024). Abordaje fisioterapéutico del ejercicio con restricción parcial del flujo sanguíneo. Revisión nar-rativa (Physiotherapeutic approach to exercise with partial restriction of blood flow. Narrative review). Retos, 58, 617–632. https://doi.org/10.47197/retos.v58.99878
Brzycki, M. (1993). Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. Journal of Phys-ical Education, Recreation & Dance, 64(1), 88–90. https://doi.org/10.1080/07303084.1993.10606684
Centner, C., Jerger, S., Lauber, B., Seynnes, O., Friedrich, T., Lolli, D., Gollhofer, A., & König, D. (2022). Low-Load Blood Flow Restriction and High-Load Resistance Training Induce Comparable Changes in Patellar Tendon Properties. Medicine & Science in Sports & Exercise, 54(4), 582–589. https://doi.org/10.1249/MSS.0000000000002824
Chang, H., Yan, J., Lu, G., Chen, B., & Zhang, J. (2023). Muscle strength adaptation between high-load re-sistance training versus low-load blood flow restriction training with different cuff pressure characteristics: A systematic review and meta-analysis. Frontiers in Physiology, 14, 1244292. https://doi.org/10.3389/fphys.2023.1244292
Chikani, V., & Ho, K. K. Y. (2014). Action of GH on skeletal muscle function: Molecular and metabolic mechanisms. Journal of Molecular Endocrinology, 52(1), R107–R123. https://doi.org/10.1530/JME-13-0208
Colapietro, M. A., Lee, J. Z., & Vairo, G. L. (2024). Survey of Blood Flow Restriction Training Applications in Sports Medicine and Performance Practice Across North America. Journal of Strength & Con-ditioning Research, 38(5), 856–863. https://doi.org/10.1519/JSC.0000000000004702
Davis, B. H., Stampley, J. E., Granger, J., Scott, M. C., Allerton, T. D., Johannsen, N. M., Spielmann, G., & Ir-ving, B. A. (2024). Impact of low‐load resistance exercise with and without blood flow re-striction on muscle strength, endurance, and oxidative capacity: A pilot study. Physiological Re-ports, 12(12), e16041. https://doi.org/10.14814/phy2.16041
Fashi, M., & Ahmadizad, S. (2021). Short-term hypoxic resistance training improves muscular perfor-mance in untrained males. Science & Sports, 36(4), 312.e1-312.e6. https://doi.org/10.1016/j.scispo.2020.10.003
Feriche, B., García-Ramos, A., Morales-Artacho, A. J., & Padial, P. (2017). Resistance Training Using Dif-ferent Hypoxic Training Strategies: A Basis for Hypertrophy and Muscle Power Development. Sports Medicine - Open, 3(1), 12. https://doi.org/10.1186/s40798-017-0078-z
Friedmann, B., Kinscherf, R., Borisch, S., Richter, G., Bärtsch, P., & Billeter, R. (2003). Effects of low-resistance/high-repetition strength training in hypoxia on muscle structure and gene expres-sion. Pflügers Archiv - European Journal of Physiology, 446(6), 742–751. https://doi.org/10.1007/s00424-003-1133-9
Gamonales, J. M., Rojas-Valverde, D., Vásquez, J., Martínez-Guardado, I., Azofeifa-Mora, C., Sánchez-Ureña, B., & Ibáñez, S. J. (2023). An Update to a Comprehensive Assessment of the Methods and Effectiveness of Resistance Training in Normobaric Hypoxia for the Development of Strength and Muscular Hypertrophy. Applied Sciences, 13(2), 1078. https://doi.org/10.3390/app13021078
Godfrey, R. J., Madgwick, Z., & Whyte, G. P. (2003). The Exercise-Induced Growth Hormone Response in Athletes: Sports Medicine, 33(8), 599–613. https://doi.org/10.2165/00007256-200333080-00005
Haeffner, A., Déas, O., Mollereau, B., Estaquier, J., Mignon, A., Haeffner-Cavaillon, N., Charpentier, B., Senik, A., & Hirsch, F. (1999). Growth hormone prevents human monocytic cells from Fas-mediated apoptosis by up-regulating Bcl-2 expression. European Journal of Immunology, 29(1), 334–344. https://doi.org/10.1002/(SICI)1521-4141(199901)29:01<334::AID-IMMU334>3.0.CO;2-S
Hamlin, M. J., & Ainslie, P. N. (2010). Prediction of acute mountain sickness and sleep apnea in subjects travelling to and training at altitude [Lincoln University]. https://researcharchive.lincoln.ac.nz/server/api/core/bitstreams/45f491a5-e568-4fda-aeaa-3dd20426ab5e/content
Huang, Z., Yang, S., Li, C., Xie, X., & Wang, Y. (2023). The effects of intermittent hypoxic training on the aerobic capacity of exercisers: A systemic review and meta-analysis. BMC Sports Science, Medi-cine and Rehabilitation, 15(1), 174. https://doi.org/10.1186/s13102-023-00784-3
Hughes, L., Paton, B., Rosenblatt, B., Gissane, C., & Patterson, S. D. (2017). Blood flow restriction training in clinical musculoskeletal rehabilitation: A systematic review and meta-analysis. British Jour-nal of Sports Medicine, 51(13), 1003–1011. https://doi.org/10.1136/bjsports-2016-097071
Iversen, E., Røstad, V., & Larmo, A. (2016). Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. Journal of Sport and Health Science, 5(1), 115–118. https://doi.org/10.1016/j.jshs.2014.12.005
Jagim, A. R., Schuler, J., Szymanski, E., Khurelbaatar, C., Carpenter, M., Fields, J. B., & Jones, M. T. (2024). Acute Responses of Low-Load Resistance Exercise with Blood Flow Restriction. Journal of Functional Morphology and Kinesiology, 9(4), 254. https://doi.org/10.3390/jfmk9040254
Jiang, G., Qin, S., Yan, B., & Girard, O. (2024). Metabolic and hormonal responses to acute high-load re-sistance exercise in normobaric hypoxia using a saturation clamp. Frontiers in Physiology, 15, 1445229. https://doi.org/10.3389/fphys.2024.1445229
Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of Resistance Training: Progression and Exer-cise Prescription: Medicine & Science in Sports & Exercise, 36(4), 674–688. https://doi.org/10.1249/01.MSS.0000121945.36635.61
Kraemer, W. J., Ratamess, N. A., Flanagan, S. D., Shurley, J. P., Todd, J. S., & Todd, T. C. (2017). Under-standing the Science of Resistance Training: An Evolutionary Perspective. Sports Medicine, 47(12), 2415–2435. https://doi.org/10.1007/s40279-017-0779-y
Lauber, B., König, D., Gollhofer, A., & Centner, C. (2021). Isometric blood flow restriction exercise: Acute physiological and neuromuscular responses. BMC Sports Science, Medicine and Rehabilitation, 13(1), 12. https://doi.org/10.1186/s13102-021-00239-7
Laurentino, G., Loenneke, J., Ugrinowitsch, C., Aoki, M., Soares, A., Roschel, H., & Tricoli, V. (2022). Blood-Flow-Restriction-Training-Induced Hormonal Response is not Associated with Gains in Muscle Size and Strength. Journal of Human Kinetics, 83, 235–243. https://doi.org/10.2478/hukin-2022-0095
Lixandrão, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceição, M. S., Damas, F., Libardi, C. A., & Roschel, H. (2018). Magnitude of Muscle Strength and Mass Adaptations Between High-Load Re-sistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Re-striction: A Systematic Review and Meta-Analysis. Sports Medicine, 48(2), 361–378. https://doi.org/10.1007/s40279-017-0795-y
Loenneke, J. P., Wilson, G. J., & Wilson, J. M. (2010). A Mechanistic Approach to Blood Flow Occlusion. International Journal of Sports Medicine, 31(01), 1–4. https://doi.org/10.1055/s-0029-1239499
Machek, S. B., Harris, D. R., Zawieja, E. E., Heileson, J. L., Wilburn, D. T., Radziejewska, A., Chmurzynska, A., Cholewa, J. M., & Willoughby, D. S. (2022). The Impacts of Combined Blood Flow Restriction Training and Betaine Supplementation on One-Leg Press Muscular Endurance, Exercise-Associated Lactate Concentrations, Serum Metabolic Biomarkers, and Hypoxia-Inducible Fac-tor-1α Gene Expression. Nutrients, 14(23), 5040. https://doi.org/10.3390/nu14235040
Manimmanakorn, A., Hamlin, M. J., Ross, J. J., Taylor, R., & Manimmanakorn, N. (2013). Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. Journal of Science and Medicine in Sport, 16(4), 337–342. https://doi.org/10.1016/j.jsams.2012.08.009
Martínez‐Guardado, I., Ramos‐Campo, D. J., Olcina, G. J., Rubio‐Arias, J. A., Chung, L. H., Marín‐Cascales, E., Alcaraz, P. E., & Timón, R. (2019). Effects of high‐intensity resistance circuit‐based training in hypoxia on body composition and strength performance. European Journal of Sport Science, 19(7), 941–951. https://doi.org/10.1080/17461391.2018.1564796
Mennitti, C., Farina, G., Imperatore, A., De Fonzo, G., Gentile, A., La Civita, E., Carbone, G., De Simone, R. R., Di Iorio, M. R., Tinto, N., Frisso, G., D’Argenio, V., Lombardo, B., Terracciano, D., Crescioli, C., & Scudiero, O. (2024). How Does Physical Activity Modulate Hormone Responses? Biomolecules, 14(11), 1418. https://doi.org/10.3390/biom14111418
Namboonlue, C., Hamlin, M. J., Sirasaporn, P., Manimmanakorn, N., Wonnabussapawich, P., Thuwakum, W., Sumethanurakkhakun, W., & Manimmanakorn, A. (2020). Optimal degree of hypoxia com-bined with low-load resistance training for muscle strength and thickness in athletes. Journal of Physical Education and Sport, 2020(02). https://doi.org/10.7752/jpes.2020.02119
Nitzsche, N., Schulze, R., Weigand, F., Hummer, N., & Schulz, H. (2018). Comparison of an acute re-sistance training on the lactateconcentration with and without blood flow restriction at differ-ent loads. Deutsche Zeitschrift Für Sportmedizin, 2018(11), 337–343. https://doi.org/10.5960/dzsm.2018.351
Pearson, S. J., & Hussain, S. R. (2015). A Review on the Mechanisms of Blood-Flow Restriction Re-sistance Training-Induced Muscle Hypertrophy. Sports Medicine, 45(2), 187–200. https://doi.org/10.1007/s40279-014-0264-9
Radovanović, G., Bohm, S., Peper, K. K., Arampatzis, A., & Legerlotz, K. (2022). Evidence-Based High-Loading Tendon Exercise for 12 Weeks Leads to Increased Tendon Stiffness and Cross-Sectional Area in Achilles Tendinopathy: A Controlled Clinical Trial. Sports Medicine - Open, 8(1), 149. https://doi.org/10.1186/s40798-022-00545-5
Ramadhan, N. A., Tinduh, D., Nugraheni, N., Subadi, I., Narasinta, I., & Melaniani, S. (2025). Vascular En-dhothelial Growth Factor levels in medium-intensity versus low-intensity exercise with blood flow restriction in elderly women. Retos, 64, 254–262. https://doi.org/10.47197/retos.v64.110307
Schoenfeld, B. J., Grgic, J., Van Every, D. W., & Plotkin, D. L. (2021). Loading Recommendations for Mus-cle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continu-um. Sports, 9(2), 32. https://doi.org/10.3390/sports9020032
Thuwakum, W., Hamlin, M. J., Manimmanakorn, N., Leelayuwat, N., Wonnabussapawich, P., Boobpa-chat, D., & Mannimmanakorn, A. (2017). Low-load resistance training with hypoxia mimics tra-ditional strength training in team sport athletes. Journal of Physical Education and Sport, 17(01). https://doi.org/10.7752/jpes.2017.01036
Törpel, A., Peter, B., & Schega, L. (2020). Effect of Resistance Training Under Normobaric Hypoxia on Physical Performance, Hematological Parameters, and Body Composition in Young and Older People. Frontiers in Physiology, 11, 335. https://doi.org/10.3389/fphys.2020.00335
Van Doorslaer De Ten Ryen, S., Warnier, G., Gnimassou, O., Belhaj, M. R., Benoit, N., Naslain, D., Brook, M. S., Smith, K., Wilkinson, D. J., Nielens, H., Atherton, P. J., Francaux, M., & Deldicque, L. (2021). Higher strength gain after hypoxic vs normoxic resistance training despite no changes in muscle thickness and fractional protein synthetic rate. The FASEB Journal, 35(8), e21773. https://doi.org/10.1096/fj.202100654RR
Wideman, L., Weltman, J. Y., Hartman, M. L., Veldhuis, J. D., & Weltman, A. (2002). Growth Hormone Release During Acute and Chronic Aerobic and Resistance Exercise: Recent Findings. Sports Medicine, 32(15), 987–1004. https://doi.org/10.2165/00007256-200232150-00003
Yan, B., Lai, X., Yi, L., Wang, Y., & Hu, Y. (2016). Effects of Five-Week Resistance Training in Hypoxia on Hormones and Muscle Strength. Journal of Strength and Conditioning Research, 30(1), 184–193. https://doi.org/10.1519/JSC.0000000000001056
Downloads
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2025 Kittamook La-bantao, Apiwan Manimmanakorn; Michael John Hamlin; Nuttaset Manimmanakorn, Qinshan Huang, Chaiyawat Namboonlue, Chiraphorn Khaengkhan, Peeraporn Nithisup

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e assegurar a revista o direito de ser a primeira publicação da obra como licenciado sob a Licença Creative Commons Attribution que permite que outros para compartilhar o trabalho com o crédito de autoria do trabalho e publicação inicial nesta revista.
- Os autores podem estabelecer acordos adicionais separados para a distribuição não-exclusiva da versão do trabalho publicado na revista (por exemplo, a um repositório institucional, ou publicá-lo em um livro), com reconhecimento de autoria e publicação inicial nesta revista.
- É permitido e os autores são incentivados a divulgar o seu trabalho por via electrónica (por exemplo, em repositórios institucionais ou no seu próprio site), antes e durante o processo de envio, pois pode gerar alterações produtivas, bem como a uma intimação mais Cedo e mais do trabalho publicado (Veja O Efeito do Acesso Livre) (em Inglês).
Esta revista é a "política de acesso aberto" de Boai (1), apoiando os direitos dos usuários de "ler, baixar, copiar, distribuir, imprimir, pesquisar, ou link para os textos completos dos artigos". (1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess