Short-term training effects on aerobic and anaerobic fitness in varsity soccer players
DOI:
https://doi.org/10.47197/retos.v73.117428Keywords:
Circuit training, Intermittent training, Blood lactate, Aerobic, AnaerobicAbstract
Objective: This study investigates the efficacy of 4-week intermittent sprint (INT) and circuit training (CT) on aerobic and anaerobic performance in varsity soccer players.
Methodology: Participants were randomly equally assigned to one of two training groups (INT or CT). Both groups were required to complete the standard soccer training regimen, supplemented by their respective training programs for the 4-week duration. Maximal oxygen consumption (VO2max), anaerobic capacity (AC), and anaerobic power were assessed as primary indicators of aerobic and anaerobic performance, respectively. Additionally, blood lactate concentrations were measured at 0 and 3 minutes following a repeated sprint test. Results: Repeated measures ANOVA revealed significant improvements in VO2max (p = 0.004) and AC (p = 0.009) after the 4-week training period, with no significant differences between the two interventions. Notably, a significant increase in minimum anaerobic power (Pmin) was observed (p = 0.043), despite higher lactate accumulation compared to pre-training levels, suggesting an enhanced ability to maintain speed under conditions of muscular fatigue.
Conclusion: These findings indicate that both training methods are effective training programs in enhancing aerobic and anaerobic performance in varsity soccer players. However, the underlying mechanisms driving the physiological responses and adaptations to these training modalities require further investigation.
References
Aguiar, M., Abrantes, C., Vitor, M., Leite, N., Sampaio, J., & Ibáñez, S. (2008). Effects of intermittent or continuous training on speed, jump and repeated-sprint ability in semi-professional soccer players. Open Sports Sci J, 1, 15-19. https://doi.org/10.2174/1875399X00801010015
American College of Sports Medicine. (2013). ACSM's guidelines for exercise testing and prescription. Lippincott williams & wilkins.
Andrade, V., Zagatto, A., Kalva-Filho, C., Mendes, O., Gobatto, C., Campos, E., & Papoti, M. (2015). Running-based anaerobic sprint test as a procedure to evaluate anaerobic power. Int J Sports Med, 36(14), 1156-1162. https://doi.org/10.1055/s-0035-1555935
Bangsbo, J. (2014). Physiological demands of football. Gatorade Sports Science Institute (GSSI). https://www.gssiweb.org/sports-science-exchange/article/sse-125-physiological-demands-of-football
Bayati, M., Farzad, B., Gharakhanlou, R., & Agha-Alinejad, H. (2011). A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble 'all-out' sprint interval training. J Sports Sci Med, 10(3), 571-576.
Benítez-Flores, S., de Sousa, A. F. M., da Cunha Totó, E. C., Santos Rosa, T., Del Rosso, S., Foster, C., & Boullosa, D. (2018). Shorter sprints elicit greater cardiorespiratory and mechanical responses with less fatigue during time-matched sprint interval training (SIT) sessions. Kinesiology, 50(2), 137-148. https://doi.org/10.26582/k.50.2.13
Bishop, D., Edge, J., & Goodman, C. (2004). Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. Eur J Appl Physiol, 92(4-5), 540-547. https://doi.org/10.1007/s00421-004-1150-1
Bogdanis, G. C., Nevill, M. E., Boobis, L. H., & Lakomy, H. K. (1996). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol (1985), 80(3), 876-884. https://doi.org/10.1152/jappl.1996.80.3.876
Boullosa, D., Dragutinovic, B., Feuerbacher, J. F., Benítez‐Flores, S., Coyle, E. F., & Schumann, M. (2022). Effects of short sprint interval training on aerobic and anaerobic indices: A systematic review and meta‐analysis. Scand J Med Sci Sports 32(5), 810-820. https://doi.org/10.1111/sms.14133
Carey, D. G., & Richardson, M. T. (2003). Can aerobic and anaerobic power be measured in a 60-second maximal test? J Sports Sci Med, 2(4), 151-157.
Cavar, M., Marsic, T., Corluka, M., Culjak, Z., Cerkez Zovko, I., Müller, A., Tschakert, G., & Hofmann, P. (2019). Effects of 6 weeks of different high-intensity interval and moderate continuous training on aerobic and anaerobic performance. J Strength Cond Res, 33(1), 44-56. https://doi.org/10.1519/jsc.0000000000002798
Dupont, G., Akakpo, K., & Berthoin, S. (2004). The effect of in-season, high-intensity interval training in soccer players. J Strength Cond Res, 18(3), 584-589. https://doi.org/10.1519/1533-4287(2004)18<584:Teoihi>2.0.Co;2
Edge, J., Hill-Haas, S., Goodman, C., & Bishop, D. (2006). Effects of resistance training on H+ regulation, buffer capacity, and repeated sprints. Med Sci Sports Exerc, 38(11), 2004-2011. https://doi.org/10.1249/01.mss.0000233793.31659.a3
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods, 39(2), 175-191. https://doi.org/10.3758/bf03193146
Fernandes-da-Silva, J., Castagna, C., Teixeira, A. S., Carminatti, L. J., & Guglielmo, L. G. (2016). The peak velocity derived from the Carminatti Test is related to physical match performance in young soccer players. J Sports Sci, 34(24), 2238-2245. https://doi.org/10.1080/02640414.2016.1209307
Forbes, S. C., Slade, J. M., & Meyer, R. A. (2008). Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans. Appl Physiol Nutr Metab, 33(6), 1124-1131. https://doi.org/10.1139/h08-099
Gaitanos, G. C., Williams, C., Boobis, L. H., & Brooks, S. (1993). Human muscle metabolism during intermittent maximal exercise. J Appl Physiol (1985), 75(2), 712-719. https://doi.org/10.1152/jappl.1993.75.2.712
Gastin, P. B., Meyer, D., Huntsman, E., & Cook, J. (2015). Increase in injury risk with low body mass and aerobic-running fitness in elite Australian football. Int J Sports Physiol Perform, 10(4), 458-463. https://doi.org/10.1123/ijspp.2014-0257
Harris, E., Rakobowchuk, M., & Birch, K. M. (2014). Sprint interval and sprint continuous training increases circulating CD34+ cells and cardio-respiratory fitness in young healthy women. PLoS One, 9(9), e108720. https://doi.org/10.1371/journal.pone.0108720
Hazell, T. J., Macpherson, R. E., Gravelle, B. M., & Lemon, P. W. (2010). 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol, 110(1), 153-160. https://doi.org/10.1007/s00421-010-1474-y
Hellsten-Westing, Y., Balsom, P. D., Norman, B., & Sjödin, B. (1993). The effect of high-intensity training on purine metabolism in man. Acta Physiol Scand, 149(4), 405-412. https://doi.org/10.1111/j.1748-1716.1993.tb09636.x
Hostrup, M., & Bangsbo, J. (2017). Limitations in intense exercise performance of athletes - effect of speed endurance training on ion handling and fatigue development. J Physiol, 595(9), 2897-2913. https://doi.org/10.1113/JP273218
Iaia, F. M., Thomassen, M., Kolding, H., Gunnarsson, T., Wendell, J., Rostgaard, T., Nordsborg, N., Krustrup, P., Nybo, L., Hellsten, Y., & Bangsbo, J. (2008). Reduced volume but increased training intensity elevates muscle Na+-K+ pump alpha1-subunit and NHE1 expression as well as short-term work capacity in humans. Am J Physiol Regul Integr Comp Physiol, 294(3), R966-974. https://doi.org/10.1152/ajpregu.00666.2007
Ijichi, T., Hasegawa, Y., Morishima, T., Kurihara, T., Hamaoka, T., & Goto, K. (2015). Effect of sprint training: training once daily versus twice every second day. Eur J Sport Sci, 15(2), 143-150. https://doi.org/10.1080/17461391.2014.932849
Islam, H., Townsend, L. K., Dunn, E., Eys, M., Robertson-Wilson, J., & Hazell, T. J. (2017). Modified sprint interval training protocols. Part II. Psychological responses. Appl Physiol Nutr Metab, 42(4), 347-353. https://doi.org/10.1139/apnm-2016-0479
Joseph, J., Woods, C., & Joyce, C. (2020). Relationship between repeated kicking performance and maximal aerobic capacity in elite junior Australian football. J Strength Cond Res, 34(8), 2294-2301. https://doi.org/10.1519/jsc.0000000000002220
Karahan, M. (2020). Effect of skill-based training vs. small-sided games on physical performance improvement in young soccer players. Biol Sport, 37(3), 305-312. https://doi.org/10.5114/biolsport.2020.96319
Klika, B., & Jordan, C. (2013). High-intensity circuit training using body weight: Maximum results with minimal investment. ACSMs Health Fit J, 17(3), 8-13. https://doi.org/10.1249/FIT.0b013e31828cb1e8
Léger, L. A., Mercier, D., Gadoury, C., & Lambert, J. (1988). The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci, 6(2), 93-101. https://doi.org/10.1080/02640418808729800
Little, J. P., Safdar, A., Wilkin, G. P., Tarnopolsky, M. A., & Gibala, M. J. (2010). A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol, 588(6), 1011-1022. https://doi.org/10.1113/jphysiol.2009.181743
Mathur, C. (2022). Effect of circuit training on agility and anaerobic power among college-level football players. Bull Env Pharmacol Life Sci, 11(6), 132-137.
McKenna, M. J., Bangsbo, J., & Renaud, J. M. (2008). Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Physiol (1985), 104(1), 288-295. https://doi.org/10.1152/japplphysiol.01037.2007
Myers, T. R., Schneider, M. G., Schmale, M. S., & Hazell, T. J. (2015). Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females. J Strength Cond Res, 29(6), 1592-1600. https://doi.org/10.1519/jsc.0000000000000790
Nasuka, N., Santosa, I., Setiowati, A., & Indrawati, F. (2018). Anaerobic capacity and blood lactate level of former elite athletes. IOP Conf Ser Mater Sci Eng, 434(1), 012157. https://doi.org/10.1088/1757-899X/434/1/012157
Orendurff, M. S., Walker, J. D., Jovanovic, M., Tulchin, K. L., Levy, M., & Hoffmann, D. K. (2010). Intensity and duration of intermittent exercise and recovery during a soccer match. J Strength Cond Res, 24(10), 2683-2692. https://doi.org/10.1519/JSC.0b013e3181bac463
Ortiz, J. G., de Lucas, R. D., Teixeira, A. S., Mohr, P. A., & Guglielmo, L. G. A. (2024). The effects of a supramaximal intermittent training program on aerobic and anaerobic running measures in junior male soccer players. J Hum Kinet, 90, 253-267. https://doi.org/10.5114/jhk/170755
Parra, J., Cadefau, J. A., Rodas, G., Amigó, N., & Cussó, R. (2000). The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiol Scand, 169(2), 157-165. https://doi.org/10.1046/j.1365-201x.2000.00730.x
Rampinini, E., Bishop, D., Marcora, S. M., Ferrari Bravo, D., Sassi, R., & Impellizzeri, F. M. (2007). Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int J Sports Med, 28(3), 228-235. https://doi.org/10.1055/s-2006-924340
Rebelo, A., Brito, J., Seabra, A., Oliveira, J., & Krustrup, P. (2014). Physical match performance of youth football players in relation to physical capacity. Eur J Sport Sci, 14 Suppl 1, S148-156. https://doi.org/10.1080/17461391.2012.664171
Ross, A., Leveritt, M., & Riek, S. (2001). Neural influences on sprint running: training adaptations and acute responses. Sports Med, 31(6), 409-425. https://doi.org/10.2165/00007256-200131060-00002
Sahlin, K. (2014). Muscle energetics during explosive activities and potential effects of nutrition and training. Sports Med, 44 Suppl 2(Suppl 2), S167-173. https://doi.org/10.1007/s40279-014-0256-9
Sammoud, S., Bouguezzi, R., Negra, Y., & Chaabene, H. (2021). The Reliability and Sensitivity of Change of Direction Deficit and Its Association with Linear Sprint Speed in Prepubertal Male Soccer Players. J Funct Morphol Kinesiol, 6(2). https://doi.org/10.3390/jfmk6020041
Scalzo, R. L., Peltonen, G. L., Binns, S. E., Shankaran, M., Giordano, G. R., Hartley, D. A., Klochak, A. L., Lonac, M. C., Paris, H. L., Szallar, S. E., Wood, L. M., Peelor, F. F., 3rd, Holmes, W. E., Hellerstein, M. K., Bell, C., Hamilton, K. L., & Miller, B. F. (2014). Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J, 28(6), 2705-2714. https://doi.org/10.1096/fj.13-246595
Siahkouhian, M., Khodadadi, D., & Shahmoradi, K. (2013). Effects of high-intensity interval training on aerobic and anaerobic indices: Comparison of physically active and inactive men. Sci Sports, 28(5), e119-e125. https://doi.org/10.1016/j.scispo.2012.11.006
Skleryk, J. R., Karagounis, L. G., Hawley, J. A., Sharman, M. J., Laursen, P. B., & Watson, G. (2013). Two weeks of reduced-volume sprint interval or traditional exercise training does not improve metabolic functioning in sedentary obese men. Diabetes Obes Metab, 15(12), 1146-1153. https://doi.org/10.1111/dom.12150
Sonchan, W. (2017). The effects of a circuit training program on muscle strength agility anaerobic performance and cardiovascular endurance. Int J Sports Health Sci 11(4).
Stølen, T., Chamari, K., Castagna, C., & Wisløff, U. (2005). Physiology of soccer: an update. Sports Med, 35(6), 501-536. https://doi.org/10.2165/00007256-200535060-00004
Vollaard, N. B. J., Metcalfe, R. S., & Williams, S. (2017). Effect of number of sprints in an SIT session on change in V O2max: A meta-analysis. Med Sci Sports Exerc, 49(6), 1147-1156. https://doi.org/10.1249/MSS.0000000000001204
World Medical Association. (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. Jama, 310(20), 2191-2194. https://doi.org/10.1001/jama.2013.281053
Zagatto, A. M., Beck, W. R., & Gobatto, C. A. (2009). Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. J Strength Cond Res, 23(6), 1820-1827. https://doi.org/10.1519/JSC.0b013e3181b3df32
Zarrinkalam, E., ranjbar, k., & Davoudi, M. (2022). Comparing the effects of eight weeks of low-volume and high-volume High Intensity interval training on lactate response and some performance indicators of soccer players. New approaches Exerc Physiol (Online), 4(8), 128-141. https://doi.org/10.22054/nass.2023.72704.1127
Zelt, J. G., Hankinson, P. B., Foster, W. S., Williams, C. B., Reynolds, J., Garneys, E., Tschakovsky, M. E., & Gurd, B. J. (2014). Reducing the volume of sprint interval training does not diminish maximal and submaximal performance gains in healthy men. Eur J Appl Physiol, 114(11), 2427-2436. https://doi.org/10.1007/s00421-014-2960-4
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Arom Treeraj, Chawannat Choodam, Giancarlo Condello, Chutimon Khemtong

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.