Anthropometric indicators of cardiovascular risk and physical fitness in the school population
DOI:
https://doi.org/10.47197/retos.v73.117825Keywords:
Physical activity , physical fitness, anthropometric indicators, logistic regression, cardiovascular riskAbstract
Introduction: Cardiovascular risk is an increasing concern in global public health. Anthropometric indicators, along with levels of physical activity and physical fitness, are key elements in predicting such risk.
Objective: To evaluate the association between anthropometric indicators and physical fitness levels in order to forecast cardiovascular risk in a school-aged population.
Methodology: A quantitative, correlational, and predictive study was conducted. Data from 414 individuals were analyzed using R software (version 4.x). Descriptive statistics and correlational analysis were applied, and binary logistic regression was used to estimate cardiovascular risk. Anthropometric measurements (weight, height, circumferences, and skinfolds) were used to calculate body mass index, waist-to-hip ratio, waist-to-height ratio, and body fat percentage. Physical activity was assessed using the PAQ-A questionnaire, and physical fitness was evaluated through the Alpha Fitness battery.
Results: 54.35% of the students were classified as inactive, and 71% presented unhealthy physical fitness levels. These factors were significantly correlated with cardiovascular risk, which showed a prevalence of 54.4%. The binary logistic regression model achieved an average AUC of 0.826 ± 0.045, demonstrating high discriminatory power, stability, and reliability.
Conclusions: Compared to international studies, this model stands out for its diagnostic accuracy, establishing itself as an effective tool for detecting cardiovascular risk in school settings.
The findings are consistent with the scientific literature available in Colombia, Latin America, Mexico, the United States, Europe, Africa, and Asia, supporting the validity of the proposed model.
References
Alcaide-Leyva, J. M., Romero-Saldaña, M., García-Rodríguez, M., Molina-Luque, R., Jiménez-Mérida, R., & Molina-Recio, G. (2023). Development of a Predictive Model of Cardiovascular Risk in a Male Population from the Peruvian Amazon. Journal of Clinical Medicine, 12(9), 3199. https://doi.org/10.3390/jcm12093199
Alemañy, D.-P. C., Fernández, G. D.-P., Arrocha, M. F., Pérez, E. A., & Ramírez, H. R. (2020). Señales ate-roscleróticas tempranas en adolescentes entre 10 y 19 años aparentemente sanos. Revista Cu-bana de Medicina General Integral, 36(2). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21252020000200006&lng=es&nrm=iso&tlng=en
Balcells, M. (2016). El estudio Framingham. Nah.Sen.Es, 4(1), 43–46. https://nah.sen.es/vmfiles/abstract/NAHV4N1201643_46ES.pdf
Breiman, L. (2001). Bosques aleatorios. Machine Learning, 45(1), 5–32., 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Candeaux, L., Candeaux, E., & Hermenegildo Pila Hernández, C. (2012). La condición física: Evolución histórica de este concepto. Lecturas: Educación Física y Deportes, ISSN-e 1514-3465, No. 170, 2012, 5 Págs., 170, 5–5. https://dialnet.unirioja.es/servlet/articulo?codigo=4742009&info=resumen&idioma=SPA
Cardozo, L. A. , Cuervo, Y. , & Murcia, J. (2016). Porcentaje de grasa corporal y prevalencia de sobre-peso-obesidad en estudiantes universitarios de rendimiento deportivo de Bogotá, Colombia. https://doi.org/10.12873/363cardozo
Carvalho, A. K. T. , da Cunha França, A. M. , dos Santos, L. L. , Padilha, L. L. , & Bogea, E. G. (2022). Waist to height ratio cut off points to predict obesity in adolescents and association with inflamma-tory markers. Nutrición Hospitalaria: Órgano Oficial de La Sociedad Española de Nutrición Clínica y Metabolismo (SENPE), ISSN-e 1699-5198, ISSN 0212-1611, Vol. 39, No. 6 (Noviem-bre-Diciembre), 2022, Págs. 1272-1279, 39(6), 1272–1279. https://doi.org/10.20960/nh.03962
Daghistani, T. , y, & R Alshammari. (2020). Comparación de técnicas de aprendizaje automático de re-gresión logística estadística y bosque aleatorio para predecir la diabetes. Researchgate.Net. https://doi.org/10.12720/jait.11.2.78-83
Damen, J. A. A. G., Hooft, L., Schuit, E., Debray, T. P. A., Collins, G. S., Tzoulaki, I., Lassale, C. M., Siontis, G. C. M., Chiocchia, V., Roberts, C., Schlüssel, M. M., Gerry, S., Black, J. A., Heus, P., Van Der Schouw, Y. T., Peelen, L. M., & Moons, K. G. M. (2016). Prediction models for cardiovascular disease risk in the general population: systematic review. Systematic Review. BMJ (Clinical Research Ed.), 353, I2416, 353, i2416. https://doi.org/10.1136/BMJ.I2416
De Almeida, R. T., Matos, S. M. A., & Aquino, E. M. L. (2021). Individual and Combined Performance of Indicators of Overall and Central Obesity to Estimate Coronary Risk in ELSA-Brasil Partici-pants. Arquivos Brasileiros de Cardiologia, 117(4), 701–712. https://doi.org/10.36660/ABC.20200360
De Carrera, De, P., Física, L. A., & Deporte, Y. (2024). Análisis comparativo de la condición física e índi-ce cintura-talla entre los estudiantes de octavo y noveno de Educación General Básica de la Unidad Educativa Fiscomisional Alicia Loza Meneses y Unidad Educativa Particular San Francisco de Sales. http://dspace.ups.edu.ec/handle/123456789/26948
Duarte, M. O., Ruelas, Y. F., López-Alcaraz, F., del Toro-Equihua, M., & Sánchez-Ramírez, C. A. (2014). Correlación entre el porcentaje de grasa determinado mediante la ecuación de Slaughter e im-pedancia bioeléctrica en niños mexicanos en edad escolar. Nutrición Hospitalaria, 29(1), 88–93. https://doi.org/10.3305/NH.2014.29.1.6992
Dundar, C. (2025). Predictive Accuracy of Biochemical and Anthropometric Indices for Metabolic Syndrome in Children with Obesity: A Comparative Study. Life 2025, Vol. 15, Page 216, 15(2), 216. https://doi.org/10.3390/LIFE15020216
Estrella, R., Salazar, F., Paredes, Y., & Racines, M. (2019). Predictores de riesgo cardiometabólico en adolescentes de Quito. Revista de La Facultad de Ciencias Médicas (Quito), 44(1), 13–25. https://doi.org/10.29166/CIENCIAS_MEDICAS.V44I1.1898
Ezzatvar, Y., Izquierdo, M., Ramírez-Vélez, R., del Pozo Cruz, B., & García-Hermoso, A. (2022). Accura-cy of different cutoffs of the waist-to-height ratio as a screening tool for cardiometabolic risk in children and adolescents: A systematic review and meta-analysis of diagnostic test accuracy studies. Obesity Reviews, 23(2), e13375. https://doi.org/10.1111/OBR.13375
Fernández, D. M., Cernadas, E., Barro, S., Amorim, D., & Fernández-Delgado, A. (2014). Do we need hundreds of classifiers to solve real world classification problems? Jmlr.OrgM Fernández-Delgado, E Cernadas, S Barro, D AmorimThe Journal of Machine Learning Research, 2014•jmlr.Org, 15, 3133–3181. https://www.jmlr.org/papers/volume15/delgado14a/delgado14a.pdf?source=post_page---------------------------
Ferrer, A. M. , Díaz-Perera Fernández, G. , Alemañy Díaz-Perera, C. , Alemañy Pérez, E. , & Pérez Aseff, H. (2024). Indicadores antropométricos relacionados con las alteraciones de la tensión arterial en adolescentes aparentemente sanos. Revista Cubana de Medicina General Integral,. http://scielo.sld.cu/scielo.php?pid=S0864-21252024000100016&script=sci_arttext&tlng=pt
Fisberg, M., Maximino, P., Kain, J., & Kovalskys, I. (2016). Obesogenic environment – intervention op-portunities. Jornal de Pediatria, 92(3), 30–39. https://doi.org/10.1016/J.JPED.2016.02.007
Herazo, B. Y., Núñez-Bravo, N., Sánchez-Güette, L., Osorio Álvarez, L., Quintero Barahona, E., Yepes Sarmiento, L., & Vázquez-Rojano, K. (2018). Condición física en escolares: diferencias según los niveles de actividad física. In Revista Latinoamericana de Hipertensión (Vol. 13). Cooperativa servicios y suministros 212518 RS. http://hdl.handle.net/20.500.12442/2441
Hu, X., Yang, Z., Ge, W., Ding, Y., & Zhong, Y. (2024). Evaluating eight indicators for identifying meta-bolic syndrome in Chinese and American adolescents. Nature.ComX Hu, Z Yang, W Ge, Y Ding, Y Zhong, J Long, X Zhu, J Hu, J YinPediatric Research, 2024•nature.Com. https://doi.org/DOI:10.1038/s41390-024-03247-8
Iguasnia, J. Menéndez. , J., Noemí Tomalá-Bazán, C., Jessica Villacrés-Castro, G., Mabel Soriano-Mateo, M., & Pamela Menéndez Iguasnia, J. (2024). El impacto de la actividad física en la prevención del síndrome metabólico: un enfoque teórico. SAPIENS International Multidisciplinary Jour-nal, 1(3), 14–34. https://doi.org/10.71068/ZC0SRM56
Juonala, M., Magnussen, C. G., Berenson, G. S., Venn, A., Burns, T. L., Sabin, M. A., Srinivasan, S. R., Daniels, S. R., Davis, P. H., Chen, W., Sun, C., Cheung, M., Viikari, J. S. A., Dwyer, T., & Raitakari, O. T. (2011). Childhood adiposity, adult adiposity, and cardiovascular risk factors. New England Journal of Medicine, Mass Medical Soc, 365(20), 1876–1885, 365(20), 1876–1885. https://doi.org/10.1056/NEJMOA1010112
Lomaglio, D. B., Marrodán Serrano, M. D., Dipierri, J. E., Alfaro, E. L., Bejarano, I. F., Cesani, M. F., Dahin-ten, S. L., Garraza, M., Menecier, N., Navazo, B., Quintero, F. A., Román, E. M., Torres, M. F., & Zonta, M. L. (2022). Referencias de índice de masa corporal. Precisión diagnóstica con área grasa braquial en escolares argentinos. Archivos Latinoamericanos de Nutrición, 72(1), 31–42. https://doi.org/10.37527/2022.72.1.004
Miranda, E., Betancourt, R., & … R. G. (2023). Índices antropométricos para la estimación de obesidad en jóvenes universitarios. Rev16deabril.Sld.Cu. https://rev16deabril.sld.cu/index.php/16_04/article/view/1747
Nie, M. J., Sun, R. Z., Fan, C. Q., Fei, X., & Li, H. J. (2025). Prevalence of dyslipidemia and predictive value of anthropometric indicators among children and adolescents in the Tibetan Plateau. Frontiers in Nutrition, 12. https://doi.org/10.3389/fnut.2025.1531197
O’Donnell, C. & Elosua R. (2009). Factores de riesgo cardiovascular. Perspectivas derivadas del Fra-mingham Heart Study. Elsevier. https://doi.org/10.1157/13116658
OMS. (2024). Actividad física. https://www.who.int/es/news-room/fact-sheets/detail/physical-activity
OMS. (2025). Obesidad y sobrepeso. https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight
Ortega, F., Ruiz, J., & Castillo, M. (2008). La aptitud física en la infancia y la adolescencia : un poderoso marcador de salud. Revista Internacional De. https://www.nature.com/articles/0803774
Peña, R. A., & Piña, Borrego. (2023). Modelo predictivo temprano de obesidad infanto-juvenil. Revista de Ciencias Médicas de Pinar Del Río, Scielo.Sld.Cu. http://scielo.sld.cu/scielo.php?pid=S1561-31942023000700006&script=sci_arttext
Quirino, V. L., Mayoral-Chavez, M., Pérez-Cervera, Y., Ildefonso-García, O., Cruz-Altamirano, E., Ruiz-García, M., & Alpuche, J. (2025). Cardiometabolic risk assessment by anthropometric and bio-chemical indices in mexican population. Frontiers in Endocrinology, 16, 1588469. https://doi.org/10.3389/fendo.2025.1588469
Rodríguez, A. D. C., Cabrera-Villamizar, A., Lorena Rodríguez-Pulido, A., Callegari, S., Alejandra, N., Ro-dríguez, O., Pinilla-Roncancio, M., Moreno López, S. M., & Andrés Sánchez-Vallejo, C. (2023). External validation of the ACC/AHA ASCVD risk score in a Colombian population cohort. Scien-tific Reports, 13(1), 6139. https://doi.org/10.1038/s41598-023-32668-4
Ruiz, España Romero, V. , Castro Piñero, J. , Artero, E. G. , Ortega, F. B. , Cuenca García, M. , Jiménez Pa-vón, D. , Chillón, P. , Girela Rejón, M. a J. , Mora, J. , Gutiérrez, A. , Suni, J. , Sjöstrom, M. , & Casti-llo, M. J. . (2011). Batería ALPHA-Fitness: test de campo para la evaluación de la condición fí-sica relacionada con la salud en niños y adolescentes. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112011000600003
Rutti, Y. Y. G. , Lizama, R. D. L. , Ramos, A. G. Y. , Choo, C. B. R. , Huiman, J. C. A. , & Huamán, F. G. V. (2023). Salud mental e indicadores antropométricos en universitarios de ciencias de la salud, Lima-Perú. Lima-Perú. Nutrición Clínica y Dietética Hospitalaria, 43 (4), 189-196. https://doi.org/10.12873/434gomez
Saad, A. H., Hassan, A. A., Al-Nafeesah, A., Aleed, A., & Adam, I. (2024). Prediction of Hypertension Based on Anthropometric Parameters in Adolescents in Eastern Sudan: A Community-Based Study. Vascular Health and Risk Management, 20, 511–519., 20, 511–519. https://doi.org/10.2147/VHRM.S491857
Sagot, E. , & Martínez, M. (2023). Obesidad infantil: una epidemia en crecimiento. Abordaje y preven-ción. Revista Electrónica de PortalesMedicos.Com. https://www.revista-portalesmedicos.com/revista-medica/obesidad-infantil-una-epidemia-en-crecimiento-abordaje-y-prevencion/
Savitz, D. A., & Wellenius, G. A. (2023). Can Cross-Sectional Studies Contribute to Causal Inference? It Depends. American Journal of Epidemiology, 192(4), 514–516. https://doi.org/10.1093/AJE/KWAC037
Secchi, García, G. C., España-Romero, V., & Castro-Piñero, J. (2014). Condición física y riesgo cardio-vascular futuro en niños y adolescentes argentinos: una introducción de la batería ALPHA. Ar-chivos Argentinos de Pediatría, 112(2), 132–140. https://doi.org/10.5546/aap.2014.132
Vasquez, F., Salazar, G., Vasquez, S., & Torres, J. (2025). Association Between Physical Fitness and Car-diovascular Health in Chilean Schoolchildren from the Metropolitan Region. Nutrients 2025, Vol. 17, Page 182, 17(1), 182. https://doi.org/10.3390/NU17010182
Vidarte Claros, J. A., Vélez Alvarez, C., Arenas, A. A., & Parra Sánchez, J. H. (2022). Valores percentiles de la condición física saludable en escolares (Percentile values of healthy physical condiction in schools). Retos, 43, 162-170. https://doi.org/10.47197/retos.v43i0.88112
WHO. (2021). Enfermedades cardiovasculares. https://www.who.int/es/health-topics/cardiovascular-diseases#tab=tab_1
Xie, L., Kim, J., Almandoz, J. P., Clark, J., Mathew, M. S., Cartwright, B. R., Barlow, S. E., Lipshultz, S. E., & Messiah, S. E. (2024). Anthropometry for predicting cardiometabolic disease risk factors in adolescents. Wiley Online Library, 32(8), 1558–1567. https://doi.org/10.1002/OBY.24090
Yang, L., Wu, H., Jin, X., Zheng, P., Hu, S., Xu, X., Yu, W., & Yan, J. (2020). Estudio de un modelo de pre-dicción de enfermedades cardiovasculares basado en un bosque aleatorio en el este de China. Informes Científicos. https://doi.org/10.1038/s41598-020-62133-5
Zhou, J., Sun, W., Zhang, C., Hou, L., Luo, Z., Jiang, D., Tan, B., Yuan, C., Zhao, D., Li, J., Zhang, R., & Song, P. (2024). Prevalence of childhood hypertension and associated factors in Zhejiang Province: a cross-sectional analysis based on random forest model and logistic regression. Springer, 24(1). https://doi.org/10.1186/S12889-024-19630-3
Zorrilla, L. C., Ceballos-Santacruz, J. D., Ramírez-Giraldo, C. D., Patiño-Palma, B. E., & Calero-Saa, P. (2020). Factors associated with cardiovascular risk in high school students of a public school in the city of Santiago de Cali, Colombia. Revista Ciencias de La Salud, 18(1), 24–36. https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.8741
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ramiro Orlando Acosta Pérez, Jose Armando Vidarte Claros, Oswaldo Ceballos Gurrola, Carlos Andrés Collazos Morales

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.