Methods of body composition measurements in amputee athletes: a systematic review

Authors

  • Jurgi Olasagasti-Ibargoien Universidad de Deusto https://orcid.org/0000-0001-9802-7110
  • Patxi León-Guereño Health, Physical Activity and Sports Science Laboratory (HealthPASS), Department of Physical Activity and Sport Science, Faculty of Education and Sport, University of Deusto, 48007 Bilbao, Spain https://orcid.org/0000-0003-2772-9128
  • Arkaitz Castañeda-Babarro Health, Physical Activity and Sports Science Laboratory (HealthPASS), Department of Physical Activity and Sport Science, Faculty of Education and Sport, University of Deusto, 48007 Bilbao, Spain https://orcid.org/0000-0002-4568-320X

DOI:

https://doi.org/10.47197/retos.v66.107971

Keywords:

Body composition, Anthropometry, Valuation indices, Amputee athletes, Measurement methods

Abstract

Introduction: Body composition’s measurement in amputee athletes presents unique challenges and it is crucial to optimising their health and performance. This systematic review evaluates the existing methods, focusing on their accuracy, accessibility and applicability for this population.

Objective: To learn about the existing methods for measuring or estimating body composition and its characteristics in amputee athletes.

Methodology: The review, conducted through PubMed/Medline, Scopus and Web of Science databases until June 2024, applies inclusion criteria such as the study of amputee athletes, identifies some measurements of body composition and peer-reviewed research articles. Studies on amputees performing physical activity, physical exercise or rehabilitation and non-peer-reviewed articles are excluded.

Results: With a total of twenty-eight articles analysed, limitations are found in each measurement method for amputees. Dual-energy X-ray absorptiometry is recognised for its high accuracy but may underestimate total lean mass; bioelectrical impedance analysis offers greater accessibility, but requires methodological adaptations for amputees, and anthropometric studies need appropriate equations for final assessment.

Discussion: The review concludes that although current methods provide valuable information, there is a pressing need to develop and validate specific techniques for amputee athletes. Improved measurement methods will improve the monitoring of health and performance in this population, promoting better sporting outcomes and overall well-being.

References

Alvero Cruz, J., Correas Gómez, L., Ronconi, M., Vázquez Fernández, R., & Porta i Manzañido, J. (2011). La bioimpedancia eléctrica como método de estimación de la composición corporal: normas prácticas de utilización. Rev Andal Med Deporte, 4(4), 167–174.

Barbosa-Silva, M. C. G., & Barros, A. J. D. (2005). Bioelectrical impedance analysis in clinical practice: A new perspective on its use beyond body composition equations. Current Opinion in Clinical Nu-trition and Metabolic Care, 8(3), 311–317. https://doi.org/10.1097/01.mco.0000165011.69943.39

Bergamini, E., Morelli, F., Marchetti, F., Vannozzi, G., Polidori, L., Paradisi, F., Traballesi, M., Cappozzo, A., & Delussu, A. S. (2015). Wheelchair Propulsion Biomechanics in Junior Basketball Players: A Method for the Evaluation of the Efficacy of a Specific Training Program. Biomed Research In-ternational, 2015. https://doi.org/10.1155/2015/275965

Bergman, R. N., Stefanovski, D., Buchanan, T. A., Sumner, A. E., Reynolds, J. C., Sebring, N. G., Xiang, A. H., & Watanabe, R. M. (2011). A better index of body adiposity. Obesity, 19(5), 1083–1089. https://doi.org/10.1038/oby.2011.38

Borga, M., West, J., Bell, J. D., Harvey, N. C., Romu, T., Heymsfield, S. B., & Leinhard, O. D. (2018). Ad-vanced body composition assessment: From body mass index to body composition profiling. Journal of Investigative Medicine, 66(5), 887–895. https://doi.org/10.1136/jim-2018-000722

Borges, M., de Athayde Costa e, A., de Faria, F. R., Godoy, P. S., Melo, E. R. B., Calegari, D. R., & Gorla, J. I. (2017). Composição corporal e desempenho motor no handebol em cadeira de rodas. Revista Brasileira de Cineantropometria e Desempenho Humano, 19(2), 204–213. https://doi.org/10.5007/1980-0037.2017v19n2p204

Campa, F., Toselli, S., Mazzilli, M., Gobbo, L. A., & Coratella, G. (2021). Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients, 13(5). https://doi.org/10.3390/nu13051620

Carter, J. E. L., & Heath, B. H. (1990). Somatotyping: development and applications (Vol. 5). Cambridge university press.

Cavedon, V., Brugnoli, C., Sandri, M., Bertinato, L., Giacobbi, L., Bolčević, F., Zancanaro, C., & Milanese, C. (2022). Physique and performance in male sitting volleyball players: implications for classifica-tion and training. PeerJ, 10, e14013. https://doi.org/10.7717/peerj.14013

Cavedon, V., Sandri, M., Peluso, I., Zancanaro, C., & Milanese, C. (2021). Body composition and bone mineral density in athletes with a physical impairment. PeerJ, 9, e11296. https://doi.org/10.7717/peerj.11296

Cavedon, V., Sandri, M., Venturelli, M., Zancanaro, C., & Milanese, C. (2020). Anthropometric Prediction of DXA-Measured Percentage of Fat Mass in Athletes With Unilateral Lower Limb Amputation. Frontiers in Physiology, 11(December), 1–11. https://doi.org/10.3389/fphys.2020.620040

Cavedon, V., Zancanaro, C., & Milanese, C. (2018). Anthropometry, Body Composition, and Performance in Sport-Specific Field Test in Female Wheelchair Basketball Players. Frontiers in Physiology, 9, 1–13. https://doi.org/10.3389/fphys.2018.00568

Cherif, M., Said, M. A., Bannour, K., Alhumaid, M. M., Chaifa, M. Ben, Khammassi, M., & Aouidet, A. (2022). Anthropometry, body composition, and athletic performance in specific field tests in Paralym-pic athletes with different disabilities. Heliyon, 8(3). https://doi.org/10.1016/j.heliyon.2022.e09023

Choi, H.-J., Ko, C.-Y., Chang, Y., Kim, G.-S., Choi, K., & Kim, C.-H. (2021). Development and validation of bioimpedance prediction equations for fat-free mass in unilateral male amputees. PEERJ, 9. https://doi.org/10.7717/peerj.10970

Choi, H.-J., Ko, C.-Y., Chang, Y., Kim, G.-S., & Kim, C.-H. (2022). Validation of body composition assess-ment for unilateral amputees via BIA by comparison with DXA. MEASUREMENT, 198. https://doi.org/10.1016/j.measurement.2022.111145

Company, J., & Ball, S. (2010). Body Composition Comparison: Bioelectric Impedance Analysis with Dual-Energy X-Ray Absorptiometry in Adult Athletes. Measurement in Physical Education and Exercise Science, 14, 186–201. https://doi.org/10.1080/1091367X.2010.497449

de Lucia, E., Lemma, F., Tesfaye, F., Demisse, T., & Ismail, S. (2002). The use of armspan measurement to assess the nutritional status of adults in four Ethiopian ethnic groups. European Journal of Clinical Nutrition, 56(2), 91–95. https://doi.org/10.1038/sj.ejcn.1601289

Diego, M. I. A., Rueda, F. M., & Conches, M. G. (2010). Repercusión del ejercicio físico en el amputado. Archivos de Medicina Del Deporte, 27(138), 291–302.

Durnin, J. V, & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. The Brit-ish Journal of Nutrition, 32(1), 77–97. https://doi.org/10.1079/BJN19740060

Faulkner, J. A. (1968). Physiology of swimming and diving. In Baltimore: Academic Press. Exercise physiology. Baltimore: Academic Press.

Ferro, A., Garrido, G., Villacieros, J., Pérez, J., & Grams, L. (2017). Nutritional habits and performance in male elite wheelchair basketball players during a precompetitive period. Adapted Physical Ac-tivity Quarterly, 34(3), 295–310. https://doi.org/10.1123/apaq.2016-0057

Frost, A. P., Giest, T. N., Ruta, A. A., Snow, T. K., & Millard-Stafford, M. (2017). Limitations of body mass index for counseling individuals with unilateral lower extremity amputation. PROSTHETICS AND ORTHOTICS INTERNATIONAL, 41(2), 186–193. https://doi.org/10.1177/0309364616650079

Gamonales Puerto, J. M., Durán-Vaca, M., Gámez-Calvo, L., Hernández-Beltrán, V., Muñoz-Jiménez, J., & León, K. (2021). Fútbol para personas con amputaciones: Revisión sistemática exploratoria (Football for people with amputations: Exploratory systematic review). Retos, 42, 145–153. https://doi.org/10.47197/retos.v42i0.86380

Gao, P., Zhao, R., Wang, S., & Han, T. (2024). Physical Fitness Parameters of Elite Chinese Wheelchair Curlers. International Journal of Morphology, 42(1), 46–51. https://doi.org/10.4067/S0717-95022024000100046

Garthe, I., Raastad, T., Refsnes, P. E., & Sundgot-Borgen, J. (2013). Effect of nutritional intervention on body composition and performance in elite athletes. European Journal of Sport Science, 13(3), 295–303. https://doi.org/10.1080/17461391.2011.643923

Grams, L., Garrido, G., Villacieros, J., & Ferro, A. (2016). Marginal Micronutrient Intake in High-Performance Male Wheelchair Basketball Players: A Dietary Evaluation and the Effects of Nu-tritional Advice. PLOS ONE, 11(7), e0157931. https://doi.org/10.1371/journal.pone.0157931

Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McGuinness, L., McDonald, S., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., Moher, D., Glan-ville, J., Chou, R., Brennan, S. E., Boutron, I., Akl, E., … Tetzlaff, J. M. (2021). Pravila PRISMA 2020. Medicina Fluminensis, 57(4), 444–465. https://doi.org/10.21860/medflum2021_264903

Guchan, Z., Bayramlar, K., & Ergun, N. (2017). Determination of the effects of playing soccer on physical fitness in individuals with transtibial amputation. JOURNAL OF SPORTS MEDICINE AND PHYS-ICAL FITNESS, 57(6), 879–886. https://doi.org/10.23736/S0022-4707.16.06336-2

Haarbo, J., Gotfredsen, A., Hassager, C., & Christiansen, C. (1991). Validation of body composition by dual energy X-ray absorptiometry (DEXA). Clinical Physiology, 11(4), 331–341.

Hart, N. H., Nimphius, S., Spiteri, T., Cochrane, J. L., & Newton, R. U. (2015). Segmental Musculoskeletal Examinations using Dual-Energy X-Ray Absorptiometry (DXA): Positioning and Analysis Con-siderations. Journal of Sports Science & Medicine, 14(3), 620–626.

Hector, A. J., & Phillips, S. M. (2018). Protein recommendations for weight loss in elite athletes: A focus on body composition and performance. International Journal of Sport Nutrition and Exercise Metabolism, 28(2), 170–177. https://doi.org/10.1123/ijsnem.2017-0273

Hernández Díaz, A. R., Acosta Díaz, L., Hernández Rojas, A. L., Moreira Martínez, M. M., & Rodríguez Ló-pez, M. (2021). Comportamiento de las amputaciones no traumáticas de miembros inferiores durante 2019-2020. Revista de Ciencias Médicas de Pinar Del Río Rev, 25(3), 1–7. http://revcmpinar.sld.cu/index.php/publicaciones/article/view/5048

Jackson, A. S., & Pollock, M. L. (1978). Generalized equations for predicting body density of men. British Journal of Nutrition, 40(3), 497–504.

Keil, M., Totosy de Zepetnek, J. O., Brooke-Wavell, K., & Goosey-Tolfrey, V. L. (2016). Measurement pre-cision of body composition variables in elite wheelchair athletes, using dual-energy X-ray ab-sorptiometry. European Journal of Sport Science, 16(1), 65–71. https://doi.org/10.1080/17461391.2014.966763

Kim, J., Wang, Z. M., Heymsfield, S. B., Baumgartner, R. N., & Gallagher, D. (2002). Total-body skeletal muscle mass: Estimation by a new dual-energy X-ray absorptiometry method. American Jour-nal of Clinical Nutrition, 76(2), 378–383. https://doi.org/10.1093/ajcn/76.2.378

Lefebvre, C., Glanville, J., Briscoe, S., Littlewood, A., Marshall, C., Metzendorf, M.-I., Noel-Storr, A., Rader, T., Shokraneh, F., Thomas, J., & others. (2019). Searching for and selecting studies. Cochrane Handbook for Systematic Reviews of Interventions, 67–107. https://doi.org/10.1002/9781119536604.ch4

Lohman, T. G. (1992). Advances in body composition assessment. Current issues in exercise science series. Monograph, 3.

Lohman, T. G., Roche, A. F., Martorell, R., & others. (1988). Anthropometric standardization reference manual.

Mally, F., Litzenberger, S., Willwacher, S., Braunstein, B., Brüggemann, G.-P., & Sabo, A. (2016). Kinetics of elite unilateral below-elbow amputee running: Comparison of symmetry of an impaired and an unimpaired athlete and the influence of additional weight on the impaired limb. Sports Engi-neering, 19, 185–199. https://doi.org/10.1007/s12283-016-0204-z

Marfell-Jones, M. J., Stewart, A. D., & De Ridder, J. H. (2012). International standards for anthropometric assessment.

Meshtel, A. V, Antonov, A. G., Zhilkin, A. N., Rybakova, P. D., Miroshnikov, A. B., & Smolensky, A. V. (2024). [Comparative analysis of body fat measurement using two bioelectric impedance de-vices and three household scales (with the function of determining body composition) with du-al-energy X-ray absorptiometry]. Voprosy pitaniia, 93(2), 95–104. https://doi.org/10.33029/0042-8833-2024-93-2-95-104

Molik, B., Kosmol, A., Laskin, J. J., Morgulec-Adamowicz, N., Skucas, K., Dabrowska, A., Gajewski, J., & Ergun, N. (2010). Wheelchair basketball skill tests: Differences between athletes’ functional classification level and disability type. Fizyoterapi Rehabilitasyon, 21(1), 11–19.

Molik, B., Laskin, J. J., Kosmol, A., Marszałek, J., Morgulec-Adamowicz, N., & Frick, T. (2013). Relation-ships between anaerobic performance, field tests, and functional level of elite female wheel-chair basketball athletes. Human Movement, 14(4), 366–371. https://doi.org/10.2478/humo-2013-0045

Nowak, A. M., Molik, B., Kosmol, A., Szczepaniak, M., & Marszalek, J. (2021). Application of the arm-cranking 30-second Wingate Anaerobic Test (the WAnT) to assess power in amputee football players. ACTA OF BIOENGINEERING AND BIOMECHANICS, 23(3), 13–23. https://doi.org/10.37190/ABB-01807-2021-02

OMS. (2024). Discapacidad: datos y cifras. https://www.who.int/es/news-room/fact-sheets/detail/disability-and-health

OMS, G. (1995). El estado físico: uso e interpretación de la antropometría.

Ozkan, A., Kayihan, G., Koklu, Y., Ergun, N., Koz, M., Ersoz, G., & Dellal, A. (2012). The Relationship Be-tween Body Composition, Anaerobic Performance and Sprint Ability of Amputee Soccer Play-ers. JOURNAL OF HUMAN KINETICS, 35, 141–146. https://doi.org/10.2478/v10078-012-0088-3

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetz-laff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Alonso-Fernández, S. (2021). Decla-ración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revis-ta Española de Cardiología, 74(9), 790–799. https://doi.org/10.1016/j.recesp.2021.06.016

Petri, C., Campa, F., Holway, F., Pengue, L., & Arrones, L. S. (2024). ISAK-Based Anthropometric Stand-ards for Elite Male and Female Soccer Players. Sports, 12(69), 1–15. https://doi.org/10.3390/sports12030069

Piccoli, A., Rossi, B., Pillon, L., & Bucciante, G. (1994). A new method for monitoring body fluid varia-tion by bioimpedance analysis: The RXc graph. Kidney International, 46(2), 534–539. https://doi.org/10.1038/KI.1994.305

Plank L. D. (2005). Dual-energy X-ray absorptiometry and body composition. Current opinion in clini-cal nutrition and metabolic care, 8(3), 305–309. https://doi.org/10.1097/01.mco.0000165010.31826.3d

Rietveld, T., Vegter, R. J. K., van der Slikke, R. M. A., Hoekstra, A. E., van der Woude, L. H. V., & De Groot, S. (2019). Wheelchair mobility performance of elite wheelchair tennis players during four field tests: Inter-trial reliability and construct validity. PLoS ONE, 14(6), 1–16. https://doi.org/10.1371/journal.pone.0217514

Rivas, L. G., Mielgo-Ayuso, J., Norte-Navarro, A., Cejuela, R., Cabañas, M. D., & Martínez-Sanz, J. M. (2015). Body composition and somatotype in university triathletes. Nutricion Hospitalaria, 32(2), 799–807. https://doi.org/10.3305/nh.2015.32.2.9142

Rodrigues, M. N., Silva, S. C. da, Monteiro, W. D., & Farinatti, P. de T. V. (2001). Comparison of body fat estimation by bioelectric impedance, skinfold thickness, and underwater weighing. Revista Brasileira de Medicina Do Esporte, 7, 125–131.

Rodríguez, K. C. M., Martínez, L. S. V., Vázquez, V. V., & Moreno, P. J. F. (2023). Comparación de dos mé-todos para estimar el porcentaje de grasa en futbolistas amputados. Estudio piloto. In Cultura Física: Avances de Investigación Científica en Educación Física y Entrenamiento Deportivo (p. 77). https://itson.mx/publicaciones/Documents/ciencias-sociales/Cultura Física.pdf#page=77

Hernández Roldan, R., Anderson Quiñonez, J., Arenas, J., Urrea, A. M., Barbosa-Granados, S., & Aguirre Loaiza, H. H. (2021). Características Psicológicas en Deportistas con Discapacidad Física (Psychological Characteristics in athletes with physical disability). Retos, 40, 351–358. https://doi.org/10.47197/retos.v1i40.83079

Saltan, A., Bakar, Y., & Ankarali, H. (2017). Wheeled mobility skills of wheelchair basketball players: a randomized controlled study. Disability and Rehabilitation: Assistive Technology, 12(4), 390–395. https://doi.org/10.1080/17483107.2016.1177857

Shuster, A., Patlas, M., Pinthus, J. H., & Mourtzakis, M. (2012). The clinical importance of visceral adipos-ity: A critical review of methods for visceral adipose tissue analysis. British Journal of Radiology, 85(1009), 1–10. https://doi.org/10.1259/bjr/38447238

Simim, M. A. M., Silva, B. V. C., Marocolo, M., Mendes, E. L., De Mello, M. T., & Da Mota, G. R. (2013). An-thropometric profile and physical performance characteristic of the Brazilian amputee football (soccer) team. Motriz. Revista de Educacao Fisica, 19(3), 641–648.

Siri, W. E. (1961). Body composition from fluid space and density. Techniques for Measuring Body Composition, 1, 223–224.

Soylu, Ç., Yıldırım, N. Ü., Akalan, C., Akınoğlu, B., & Kocahan, T. (2021). The Relationship Between Ath-letic Performance and Physiological Characteristics in Wheelchair Basketball Athletes. Re-search Quarterly for Exercise and Sport, 92(4), 639–650. https://doi.org/10.1080/02701367.2020.1762834

Stewart, A., Marfell-Jones, M., Olds, T., & De Ridder, H. (2011). International society for advancement of kinanthropometry. International Standards for Anthropometric Assessment, 115.

Tachibana, K., Mutsuzaki, H., Shimizu, Y., Doi, T., Hotta, K., & Wadano, Y. (2019). Influence of functional classification on skill tests in elite female wheelchair basketball athletes. Medicina (Lithuania), 55(11), 1–10. https://doi.org/10.3390/medicina55110740

Tzamaloukas, A. H., & Murata, G. H. (1996). Estimating urea volume in amputees on peritoneal dialysis by modified anthropometric formulas. In Advances in peritoneal dialysis. Conference on Peri-toneal Dialysis (Vol. 12, pp. 143–146).

Tzamaloukas, A. H., Patron, A., & Malhotra, D. (1994). Body mass index in amputees. JPEN. Journal of Parenteral and Enteral Nutrition, 18(4), 355–358. https://doi.org/10.1177/014860719401800414

Vanlandewijck, Y. C., Verellen, J., & Tweedy, S. (2011). Towards evidence-based classification in wheel-chair sports: impact of seating position on wheelchair acceleration. Journal of Sports Sciences, 29(10), 1089–1096. https://doi.org/10.1080/02640414.2011.576694

Weber, V. M. R., Fernandes, D. Z., Vieira, E. R., Ferreira, S. A., da Silva, D. F., & Queiroga, M. R. (2021). Ad-aptation of Anaerobic Field-Based Tests for Wheelchair Basketball Athletes. Research Quarterly for Exercise and Sport, 92(4), 715–722. https://doi.org/10.1080/02701367.2020.1769009

Whiting, P., Savović, J., Higgins, J. P. T., Caldwell, D. M., Reeves, B. C., Shea, B., Davies, P., Kleijnen, J., & Churchill, R. (2016). ROBIS: A new tool to assess risk of bias in systematic reviews was devel-oped. Journal of Clinical Epidemiology, 69, 225–234. https://doi.org/10.1016/j.jclinepi.2015.06.005

Yanci, J., Granados, C., Otero, M., Badiola, A., Olasagasti, J., Bidaurrazaga-Letona, I., Iturricastillo, A., & Gil, S. M. (2015). Sprint, agility, strength and endurance capacity in wheelchair basketball players. Biology of Sport, 32(1), 71–78. https://doi.org/10.5604/20831862.1127285

Yüksel, M. F., & Sevindi, T. (2018). Examination of Performance Levels of Wheelchair Basketball Play-ers Playing in Different Leagues. Sports, 6(18), 1–8. https://doi.org/10.3390/sports6010018

Yurdakul, E., & Kizilci, H. M. (2021). A comparison of physical performance analyses of amputee pro-fessional and elite footballers. JOURNAL OF SPORTS MEDICINE AND PHYSICAL FITNESS, 61(7), 916–922. https://doi.org/10.23736/S0022-4707.21.11859-6

Zorba, E., & Saygın, Ö. (2009). Fiziksel Aktivite ve Fiziksel Uygunluk.(2. Baskı). In İstanbul: İnceler Of-set.

Zwierzchowska, A., Rosołek, B., Sikora, M., & Celebańska, D. (2022). Forced Sedentariness and Sports Activity as Factors Differentiating Anthropometric Characteristics, Indices, and Body Composi-tion in People with Disabilities. Biology, 11(6), 1–10. https://doi.org/10.3390/biology11060906

Published

2025-03-17

How to Cite

Olasagasti-Ibargoien, J., León-Guereño, P., & Castañeda-Babarro, A. (2025). Methods of body composition measurements in amputee athletes: a systematic review. Retos, 66, 416–427. https://doi.org/10.47197/retos.v66.107971

Issue

Section

Theoretical systematic reviews and/or meta-analysis

Most read articles by the same author(s)