Relationship between heart rate variability, physical activity levels, and sociodemographic factors in young adults: cross-sectional study
DOI:
https://doi.org/10.47197/retos.v64.111922Keywords:
autonomic nervous system, exercise, body composition, subjective stress, sleep qualityAbstract
Introduction: heart rate variability is a key indicator of cardiovascular health and autonomic balance, influenced by various factors such as age and stress. Objective: to relate heart rate variability to body composition, physical activity levels, sleep quality, and self-perceived stress in young Chilean adults with low cardiometabolic risk. Methodology: a cross-sectional study was conducted in 2024 with the participation of 32 young adults (18 to 30 years old), selected based on inclusion criteria related to adequate physical activity levels and the absence of chronic diseases. The analysis considered variables such as body composition, sleep quality, stress levels, physical activity levels, and heart rate variability, with the latter measured over a 5-minute resting period. Results: age showed a significant negative relationship with RMSSD (β = -0.43, t = -2.48, p = .02), indicating a decrease in parasympathetic activity as age increases. Self-perceived stress, however, did not show a significant impact on RMSSD (β = .09, p = .60) or the RR/RMSSD ratio (β = -0.37, p = .04). Discussion: the findings highlight the importance of heart rate variability as an indicator of autonomic health, emphasizing how age and stress impact vagal modulation. These results reinforce the need to integrate autonomic monitoring into preventive strategies to improve cardiovascular health. Conclusion: heart rate variability is significantly related to age and self-perceived stress. These findings underline the importance of integrating autonomic monitoring into preventive health strategies.
References
Baik, S. H., Fox, R. S., Mills, S. D., Roesch, S. C., Sadler, G. R., Klonoff, E. A., & Malcarne, V. L. (2019). Reliability and validity of the Perceived Stress Scale-10 in Hispanic Americans with English or Spanish language preference. Journal of health psychology, 24(5), 628–639. https://doi.org/10.1177/1359105316684938
Balboa-Castillo, T., Muñoz, S., Seron, P., Andrade-Mayorga, O., Lavados-Romo, P., Aguilar-Farias, N .(2023) Validity and reliability of the international physical activity question-naire short form in Chilean adults. PLoS ONE, 18(10):e0291604. https://doi.org/10.1371/jour-nal.pone.0291604
Billman, G. E., Huikuri, H. V., Sacha, J., & Trimmel, K. (2015). An introduction to heart rate variability: methodological considerations and clinical applications. Frontiers in physiology, 6, 55. https://doi.org/10.3389/fphys.2015.00055
Boullosa, D., Medeiros, AR., Flatt, AA., Esco, MR., Naka-mura, FY., Foster, C. (2021). Relationships between Workload, Heart Rate Variability, and Performance in a Recreational Endurance Runner. Journal of Functional Morphology and Kinesiology, 6(1):30. https://doi.org/10.3390/jfmk6010030
Burlacu, A., Brinza, C., Popa, I. V., Covic, A., & Floria, M. (2021). Influencing Cardiovascular Outcomes through Heart Rate Variability Modulation: A Systematic Review. Diagnostics (Basel, Switzerland), 11(12), 2198. https://doi.org/10.3390/diagnostics11122198
Cuschieri S. (2019). The STROBE guidelines. Saudi journal of anaesthesia, 13(Suppl 1), S31–S34. https://doi.org/10.4103/sja.SJA_543_18
D'Angelo, J., Ritchie, S. D., Oddson, B., Gagnon, D. D., Mrozewski, T., Little, J., & Nault, S. (2023). Using Heart Rate Variability Methods for Health-Related Outcomes in Outdoor Contexts: A Scoping Review of Empirical Studies. International journal of environmental research and public health, 20(2), 1330. https://doi.org/10.3390/ijerph20021330
da Estrela, C., McGrath, J., Booij, L., & Gouin, J. P. (2021). Heart Rate Variability, Sleep Quality, and Depression in the Context of Chronic Stress. Annals of behavioral medicine : a publication of the Society of Behavioral Medicine, 55(2), 155–164. https://doi.org/10.1093/abm/kaaa039
De Arriba Muñoz, A., López Úbeda, M., Rueda Caballero, C., Labarta Aizpún, J.I., Ferrández Longás, Á. (2016). Valores de normalidad de índice de masa corporal y perímetro abdominal en población española desde el nacimiento a los 28 años de edad. Nutrition Hospitalaria, 33(4):3-88. https://doi.org/10.20960/nh.388
El-Malahi, O., Mohajeri, D., Mincu, R., Bäuerle, A., Rothenaicher, K., Knuschke, R., Rammos, C., Rassaf, T., & Lortz, J. (2024). Beneficial impacts of physical activity on heart rate variability: A systematic review and meta-analysis. PLoS ONE, 19(4), e0299793. https://doi.org/10.1371/journal.pone.0299793
Espinoza-Salinas, A., Zafra-Santos, E., Pavez-Von Martens, G., Cofré-Bolados, C., Lemus-Zúñiga, J., & Sánchez-Aguilera, P. (2015). Análisis de variabilidad del ritmo cardiaco y su relación con la sensibilidad insulínica en pacientes obesos y con sobrepeso. Revista médica de Chile, 143(9), 1129-1135. https://doi.org/10.4067/S0034-98872015000900005
Espinoza-Salinas, A., Brito, C., Arenas Sánchez, G., Peiret Villacura, L., Molina Sotomayor, E., Cigarroa Cuevas, I., & González-Jurado, J. A. (2022). Autonomic function and its relationship with central obesity and hemodynamic variables in obese and overweight adults. Nutricion hospitalaria, 39(2), 320–328. https://doi.org/10.20960/nh.03808
Facioli, T. P., Philbois, S. V., Gastaldi, A. C., Almeida, D. S., Maida, K. D., Rodrigues, J. A. L., Sánchez-Delgado, J. C., & Souza, H. C. D. (2021). Study of heart rate recovery and cardiovascular autonomic modulation in healthy participants after submaximal exercise. Scientific reports, 11(1), 3620. https://doi.org/10.1038/s41598-021-83071-w
Fuentes-Barría, H., Aguilera Eguia, R. ., & Polevoy, G. (2024a). Entrenamiento interválico de alta intensidad basado en la actividad parasimpática y su impacto sobre la capacidad cardiorrespiratoria de estudiantes universitarios. Ensayo Controlado Aleatorizado. Retos, 55, 513–519. https://doi.org/10.47197/retos.v55.105419
Fuentes-Barría, H., Aguilera-Eguía, R., Polevoy, G.G., Maureira-Sánchez, J., Angarita-Dávila, L (2024b). Efectos del entrenamiento Interválico de Alta Intensidad sobre la capacidad aeróbica y variabilidad cardiaca en estudiantes universitarios. Estudio cuasiexperimental. Journal of Sport and Health Research, 16(2):58-66. https://doi.org/10.58727/jshr.102273
Gathright, E. C., Hughes, J. W., Sun, S., Storlazzi, L. E., DeCosta, J., Balletto, B. L., Carey, M. P., Scott-Sheldon, L. A. J., & Salmoirago-Blotcher, E. (2024). Effects of stress management interventions on heart rate variability in adults with cardiovascular disease: a systematic review and meta-analysis. Journal of behavioral medicine, 47(3), 374–388. https://doi.org/10.1007/s10865-024-00468-4
Goel, R., Pham, A., Nguyen, H., Lindberg, C., Gilligan, B., Mehl, M. R., Heerwagen, J., Kampschroer, K., Sternberg, E. M., Najafi, B., & Wellbuilt for Wellbeing Team (2021). Effect of Workstation Type on the Relationship Between Fatigue, Physical Activity, Stress, and Sleep. Journal of occupational and environmental medicine, 63(3), e103–e110. https://doi.org/10.1097/JOM.0000000000002108
Goodyke, M. P., Hershberger, P. E., Bronas, U. G., & Dunn, S. L. (2022). Perceived Social Support and Heart Rate Variability: An Integrative Review. Western journal of nursing research, 44(11), 1057–1067. https://doi.org/10.1177/01939459211028908
Grässler, B., Thielmann, B., Böckelmann, I., & Hökelmann, A. (2021). Effects of different exercise interventions on heart rate variability and cardiovascular health factors in older adults: a systematic review. European review of aging and physical activity: official journal of the European Group for Research into Elderly and Physical Activity, 18(1), 24. https://doi.org/10.1186/s11556-021-00278-6
Gronwald, T., & Hoos, O. (2020). Correlation properties of heart rate variability during endurance exercise: A systematic review. Annals of noninvasive electrocardiology : the official journal of the International Society for Holter and Noninvasive Electrocardiology, Inc, 25(1), e12697. https://doi.org/10.1111/anec.12697
Gutiérrez-Maldonado, E., Ledesma-Ramírez, C. I., Pliego-Carrillo, A. C., & Reyes-Lagos, J. J. (2018). Sign and magnitude scaling properties of heart rate fluctuations following vagus nerve stimulation in a patient with drug-resistant epilepsy. Epilepsy & behavior case reports, 10, 78–81. https://doi.org/10.1016/j.ebcr.2018.05.003
He, X., Zhao, M., Bi, X., Sun, L., Yu, X., Zhao, M., & Zang, W. (2015). Novel strategies and underlying protective mechanisms of modulation of vagal activity in cardiovascular diseases. British journal of pharmacology, 172(23), 5489–5500. https://doi.org/10.1111/bph.13010
Immanuel, S., Teferra, M. N., Baumert, M., & Bidargaddi, N. (2023). Heart Rate Variability for Evaluating Psychological Stress Changes in Healthy Adults: A Scoping Review. Neuropsychobiology, 82(4), 187–202. https://doi.org/10.1159/000530376
Koenig, J., & Thayer, J. F. (2016). Sex differences in healthy human heart rate variability: A meta-analysis. Neuroscience and biobehavioral reviews, 64, 288–310. https://doi.org/10.1016/j.neubiorev.2016.03.007
Li, C., Lyu, S., & Zhang, J. (2022). Effects of Aerobic Exercise on the Serum Leptin Level and Heart Rate Variability in the Obese Girl Children. Computational intelligence and neuroscience, 2022, 2298994. https://doi.org/10.1155/2022/2298994
Marasingha-Arachchige, S. U., Rubio-Arias, J. Á., Alcaraz, P. E., & Chung, L. H. (2022). Factors that affect heart rate variability following acute resistance exercise: A systematic review and meta-analysis. Journal of sport and health science, 11(3), 376–392. https://doi.org/10.1016/j.jshs.2020.11.008
Medina Corrales, M., Garrido Esquivel, A., Flores Cruz, M., Miranda Mendoza, F J., García Dávila, MZ., Hernández Cruz, G., Naranjo Orellana, J (2021). Utilidad de la RMSSD-Slope para cuantificación de carga interna de entrenamiento en jugadores élite de bádminton. Estudio de caso. Retos, 40, 60-66. https://doi.org/10.47197/retos.v1i40.78348
Nevels, T. L., Wirth, M. D., Ginsberg, J. P., McLain, A. C., & Burch, J. B. (2023). The role of sleep and heart rate variability in metabolic syndrome: evidence from the Midlife in the United States study. Sleep, 46(5), zsad013. https://doi.org/10.1093/sleep/zsad013
Nuuttila, O. P., Korhonen, E., Laukkanen, J., & Kyröläinen, H. (2021). Validity of the Wrist-Worn Polar Vantage V2 to Measure Heart Rate and Heart Rate Variability at Rest. Sensors (Basel, Switzerland), 22(1), 137. https://doi.org/10.3390/s22010137
Porras-Álvarez, J., & Bernal-Calderón, MO. (2019). Variabilidad de la frecuencia cardiaca: evaluación del entrenamiento deportivo. Revisión de tema. Duazary, 16(2), 259–269. https://doi.org/10.21676/2389783X.2750
Ravé, G., Zouhal, H., Boullosa, D., Doyle-Baker, P. K., Saeidi, A., Abderrahman, A. B., & Fortrat, J. O. (2020). Heart Rate Variability is Correlated with Perceived Physical Fitness in Elite Soccer Players. Journal of human kinetics, 72, 141–150. https://doi.org/10.2478/hukin-2019-0103
Reginato, E., Azzolina, D., Folino, F., Valentini, R., Bendinelli, C., Gafare, C. E., Cainelli, E., Vedovelli, L., Iliceto, S., Gregori, D., & Lorenzoni, G. (2020). Dietary and Lifestyle Patterns are Associated with Heart Rate Variability. Journal of clinical medicine, 9(4), 1121. https://doi.org/10.3390/jcm9041121
Rogers, B., Schaffarczyk, M., & Gronwald, T. (2022). Estimation of Respiratory Frequency in Women and Men by Kubios HRV Software Using the Polar H10 or Movesense Medical ECG Sensor during an Exercise Ramp. Sensors (Basel, Switzerland), 22(19), 7156. https://doi.org/10.3390/s22197156
Schaffarczyk, M., Rogers, B., Reer, R., & Gronwald, T. (2022). Validity of the Polar H10 Sensor for Heart Rate Variability Analysis during Resting State and Incremental Exercise in Recreational Men and Women. Sensors (Basel, Switzerland), 22(17), 6536.
Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia and analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864
Serón, P., Muñoz, S., & Lanas, F. (2010). Nivel de actividad física medida a través del cuestionario internacional de actividad física en población Chilena. Revista médica de Chile, 138(10), 1232-1239. https://doi.org/10.4067/S0034-98872010001100004
Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in public health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
Sidebotham, D., & Barlow, C. J. (2024). The central limit theorem: the remarkable theory that explains all of statistics. Anaesthesia, 79(10), 1117–1121. https://doi.org/10.1111/anae.16420
Turcu, A. M., Ilie, A. C., Ștefăniu, R., Țăranu, S. M., Sandu, I. A., Alexa-Stratulat, T., Pîslaru, A. I., & Alexa, I. D. (2023). The Impact of Heart Rate Variability Monitoring on Preventing Severe Cardiovascular Events. Diagnostics (Basel, Switzerland), 13(14), 2382. https://doi.org/10.3390/diagnostics13142382
Vondrasek, J. D., Riemann, B. L., Grosicki, G. J., & Flatt, A. A. (2023). Validity and Efficacy of the Elite HRV Smartphone Application during Slow-Paced Breathing. Sensors (Basel, Switzerland), 23(23), 9496. https://doi.org/10.3390/s23239496
Wiewelhove, T., Schneider, C., Schmidt, A., Döweling, A., Meyer, T., Kellmann, M., Pfeiffer, M., & Ferrauti, A. (2018). Active Recovery After High-Intensity Interval-Training Does Not Attenuate Training Adaptation. Frontiers in physiology, 9, 415. https://doi.org/10.3389/fphys.2018.00415
World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053
Yadav, R. L., Yadav, P. K., Yadav, L. K., Agrawal, K., Sah, S. K., & Islam, M. N. (2017). Association between obesity and heart rate variability indices: an intuition toward cardiac autonomic alteration - a risk of CVD. Diabetes, metabolic syndrome and obesity : targets and therapy, 10, 57–64. https://doi.org/10.2147/DMSO.S123935
Young, H. A., & Benton, D. (2018). Heart-rate variability: a biomarker to study the influence of nutrition on physiological and psychological health?. Behavioural pharmacology, 29(2 and 3-Spec Issue), 140–151. https://doi.org/10.1097/FBP.000000000000038
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Héctor Fuentes-Barría, Raúl Aguilera-Eguía, Miguel Alarcón-Rivera, Lissé Angarita-Davila, Diana Rojas-Gómez, Juan Maureira-Sánchez, Olga Patricia López-Soto, Eduardo Guzmán-Muñoz

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.