The effectiveness of speed, agility, quickness training vs high-intensity interval training in improving speed and agility on badminton players

Authors

  • Sapto Wibowo Universitas Negeri Surabaya
  • Oce Wiriawan Universitas Negeri Surabaya
  • Anindya Maratus Sholikhah Universitas Negeri Surabaya
  • Achmad Syaifudin Institut Teknologi Sepuluh November Surabaya https://orcid.org/0000-0001-8109-9396
  • Yuri Pamungkas Institut Teknologi Sepuluh November Surabaya
  • Lilik Herawati Airlangga University
  • Gadis Meinar Sari Airlangga University
  • Dodi Wirawan Irawanto Brawijaya University
  • Radityo Putro Handrito Brawijaya University
  • Sapto Adi Universitas Negeri Malang
  • Supriyadi Supriyadi Universitas Negeri Malang

DOI:

https://doi.org/10.47197/retos.v68.113616

Keywords:

agility, badminton, change of direction, HIIT, SAQ, speed

Abstract

Introduction: Badminton is a fast-paced racket sport which requires player to possess quick reaction, high-speed hitting ability, and rapid movement. These abilities are related to speed and agility which are one of the essential motor demands in badminton.

Objective: This study aims to compare the effect of high-intensity interval training (HIIT) versus speed agility quickness (SAQ) training on agility and speed among badminton players. Methodology: Thirty amateur badminton players participated in this quasi-experimental study. They were split into three groups: the HIIT, the SAQ, and the control group. Players in each group received eight weeks of intervention. The Illinois Agility Test was used to measure agility, and the 30-meter sprint test was used to measure speed. Statistical analysis was performed using SPSS software, version 24. Paired t-test was used to compare pre-post differences in each group. Intergroup comparison was evaluated using one-way ANOVA test.

Results: Significant improvements in speed were found in SAQ (p=0,012) and HIIT (p=0,000). The increase in agility were found in all groups but only HIIT found to be statistically significant (p=0.000). Highest improvement in speed was observed in SAQ (3.36%) while highest agility was found in HIIT (3.10%).

Discussion: HIIT is known as a potent exercise that activates aerobic and anaerobic energy systems, facilitating player with the chance to enhance the power and speed in badminton and other racket sports by focusing on high-strength muscle fibers. Meanwhile, SAQ training was designed specifically to increase players’ change-of-direction speed and agility performances as well as their ability to sprint and run faster during a game.

Conclusions: Both HIIT and SAQ training were equally effective in improving speed and agility in badminton players. These trainings can be used as evidence-based approach to improve skills in badminton players for optimal performance.

References

Alam, F., Chowdhury, H., Theppadungporn, C., & Subic, A. (2010). Measurements of aerodynamic prop-erties of badminton shuttlecocks. Procedia Engineering, 2(2), 2487–2492. https://doi.org/10.1016/j.proeng.2010.04.020

Chandra, S., Sharma, A., Malhotra, N., Rizvi, M. R., & Kumari, S. (2023). Effects of Plyometric Training on the Agility, Speed, and Explosive Power of Male Collegiate Badminton Players. Journal of Life-style Medicine, 13(1), 52–58. https://doi.org/10.15280/jlm.2023.13.1.52

Chandrakumar, N., & Ramesh, C. (2015). Effect of ladder drill and SAQ training on speed and agility among sports club badminton players. International Journal of Applied Research, 1(12), 527–529.

de Freitas, P. B., & Junior, L. de F. B. L. (2012). Influence of the performance level of badminton players in neuromotor aspects during a target-pointing task. Revista Brasileira de Medicina Do Esporte, 18, 203. https://doi.org/10.1590/S1517-86922012000300014

Deng, N., Soh, K. G., Abdullah, B., & Huang, D. (2023). Effects of plyometric training on measures of physical fitness in racket sport athletes: A systematic review and meta-analysis. PeerJ, 11, e16638. https://doi.org/10.7717/peerj.16638

Dhapola, M. S. (2017). Effect of SAQ training on agility and endurance between cricket players. Interna-tional Journal of Physiology, Nutrition and Physical Education, 2(2), 434–436.

Donie, Shapie, M. N. M. S., Okilanda, A., Edmizal, E., Suryadi, D., & Suganda, M. A. (2023). Concentration, eye coordination and agility: How they influence badminton playing skills. Journal of Physical Education and Sport, 23(12), 3309–3317.

Fajrin, F., Kusnanik, N. W., & Wijono. (2018). Effects of High Intensity Interval Training on Increasing Explosive Power, Speed, and Agility. Journal of Physics: Conference Series, 947(1), 012045. https://doi.org/10.1088/1742-6596/947/1/012045

Falch, H. N., Rædergård, H. G., & van den Tillaar, R. (2019). Effect of Different Physical Training Forms on Change of Direction Ability: A Systematic Review and Meta-analysis. Sports Medicine - Open, 5, 53. https://doi.org/10.1186/s40798-019-0223-y

Fuentes-García, J. P., Díaz-García, J., López-Gajardo, M. Á., & Clemente-Suarez, V. J. (2021). Effects of Combined HIIT and Stroop on Strength Manifestations, Serve Speed and Accuracy in Recrea-tional Tennis Players. Sustainability, 13(14), Article 14. https://doi.org/10.3390/su13147717

Gamble, P. (2011). Training for Sports Speed and Agility: An Evidence-Based Approach. Routledge.

Hariyanto, A., Prakosa, M. W. B., & Sholikhah, A. M. (2021). Optimalization of reaction time through imagery and concentration training in fencing. MEDIKORA: Jurnal Ilmiah Kesehatan Olahraga, 20(1), Article 1. https://doi.org/10.21831/medikora.v20i1.36962

Hariyanto, A., Pramono, B. A., Mustar, Y. S., Sholikhah, A. M., & Prilaksono, M. I. A. (2022). Effect of Two Different Plyometric Trainings on Strength, Speed and Agility Performance. 109–115. https://doi.org/10.2991/ahsr.k.220203.017

Hong, Y., Wang, S. J., Lam, W. K., & Cheung, J. T. M. (2014). Kinetics of badminton lunges in four direc-tions. Journal of Applied Biomechanics, 30(1), 113–118. https://doi.org/10.1123/jab.2012-0151

Ihsan, F., Nasrulloh, A., Nugroho, S., & Yuniana, R. (2024). The Effect of Shadow Training and Muscle Endurance on Agility of Badminton Athletes 12-17 Years of Age. Retos, 54, 36–45. https://doi.org/10.47197/retos.v54.103003

Jovanovic, M., Sporis, G., Omrcen, D., & Fiorentini, F. (2011). Effects of Speed, Agility, Quickness Train-ing Method on Power Performance in Elite Soccer Players. The Journal of Strength & Condition-ing Research, 25(5), 1285. https://doi.org/10.1519/JSC.0b013e3181d67c65

Kilit, B., & Arslan, E. (2019). Effects of High-Intensity Interval Training vs. On-Court Tennis Training in Young Tennis Players. Journal of Strength and Conditioning Research, 33(1), 188–196. https://doi.org/10.1519/JSC.0000000000002766

Ko, D.-H., Choi, Y.-C., & Lee, D.-S. (2021). The Effect of Short-Term Wingate-Based High Intensity Inter-val Training on Anaerobic Power and Isokinetic Muscle Function in Adolescent Badminton Players. Children, 8(6), 458. https://doi.org/10.3390/children8060458

Lee, Y.-S., Lee, D., & Ahn, N. Y. (2024). SAQ training on sprint, change-of-direction speed, and agility in U-20 female football players. PLOS ONE, 19(3), e0299204. https://doi.org/10.1371/journal.pone.0299204

Liu, Y., Abdullah, B. B., & Abu Saad, H. B. (2024). Effects of high-intensity interval training on strength, speed, and endurance performance among racket sports players: A systematic review. PloS One, 19(1), e0295362. https://doi.org/10.1371/journal.pone.0295362

Lu, Z., Zhou, L., Gong, W., Chuang, S., Wang, S., Guo, Z., Bao, D., Zhang, L., & Zhou, J. (2022). The Effect of 6-Week Combined Balance and Plyometric Training on Dynamic Balance and Quickness Per-formance of Elite Badminton Players. International Journal of Environmental Research and Public Health, 19(3), 1605. https://doi.org/10.3390/ijerph19031605

Milanović, Z., Sporiš, G., Trajković, N., Sekulić, D., James, N., & Vučković, G. (2014). Does SAQ training improve the speed and flexibility of young soccer players? A randomized controlled trial. Hu-man Movement Science, 38, 197–208. https://doi.org/10.1016/j.humov.2014.09.005

Mukesh, D., P., S., & Paul, J. (2021). Effect of Agility Specific Exercise Program on Agility in Badminton Players. International Journal of Pharma and Bio Sciences, 11. https://doi.org/10.22376/ijpbs/lpr.2021.11.4.L29-34

Panissa, V. L. G., Fukuda, D. H., Staibano, V., Marques, M., & Franchini, E. (2021). Magnitude and duration of excess of post-exercise oxygen consumption between high-intensity interval and moderate-intensity continuous exercise: A systematic review. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 22(1), e13099. https://doi.org/10.1111/obr.13099

Phomsoupha, M., & Laffaye, G. (2015). The science of badminton: Game characteristics, anthropome-try, physiology, visual fitness and biomechanics. Sports Medicine (Auckland, N.Z.), 45(4), 473–495. https://doi.org/10.1007/s40279-014-0287-2

Polman, R., Bloomfield, J., & Edwards, A. (2009). Effects of SAQ training and small-sided games on neu-romuscular functioning in untrained subjects. International Journal of Sports Physiology and Performance, 4(4), 494–505. https://doi.org/10.1123/ijspp.4.4.494

Prachita, W., Josheeta, S., & MGM College of Physiotherapy, Navi Mumbai, Maharashtra, India. (2023). Effect of Plyometric Exercises Versus Speed Agility Quickness Training on Agility, Speed, Pow-er, Dynamic Balance and Reaction Time in Amateur Badminton Players. International Journal of Physiotherapy and Research, 11(3), 4524–4530. https://doi.org/10.16965/ijpr.2023.124

Putera, S. H. P., Setijono, H., Wiriawan, O., Nurhasan, Muhammad, H. N., Hariyanto, A., Sholikhah, A. M., & Pranoto, A. (2023). Positive Effects of Plyometric Training on Increasing Speed, Strength and Limb Muscles Power in Adolescent Males. Physical Education Theory and Methodology, 23(1), 42–48. https://doi.org/10.17309/tmfv.2023.1.06

Shedge, S. S., Ramteke, S. U., & Jaiswal, P. R. (2024). Optimizing Agility and Athletic Proficiency in Bad-minton Athletes Through Plyometric Training: A Review. Cureus, 16(1), e52596. https://doi.org/10.7759/cureus.52596

Singh, J., Raza, S., & Mohammad, A. (2011). Physical Characteristics and Level of Performance in Bad-minton: A Relationship Study. Journal of Education and Practice, 2(5), 6–9.

Trecroci, A., Milanović, Z., Rossi, A., Broggi, M., Formenti, D., & Alberti, G. (2016). Agility profile in sub-elite under-11 soccer players: Is SAQ training adequate to improve sprint, change of direction speed and reactive agility performance? Research in Sports Medicine (Print), 24(4), 331–340. https://doi.org/10.1080/15438627.2016.1228063

Wismanadi, H., Roepajadi, J., Pudjijuniarto, P., Rusdiawan, A., Dini, C. Y., & Sholikhah, A. M. (2024). Glu-tamine Accelerates Post-Exercise Recovery of Arms Power, Leg Power, and Smash Velocity at 48 Hours for Non-Elite Badminton Athletes. Retos, 53, 481–488. https://doi.org/10.47197/retos.v53.102455

Wong, T. K. K., Ma, A. W. W., Liu, K. P. Y., Chung, L. M. Y., Bae, Y.-H., Fong, S. S. M., Ganesan, B., & Wang, H.-K. (2019). Balance control, agility, eye–hand coordination, and sport performance of amateur badminton players. Medicine, 98(2), e14134. https://doi.org/10.1097/MD.0000000000014134

Zhu, Z., Chen, Y., Zou, J., Gao, S., Wu, D., Li, X., Hu, N., Zhao, J., Huang, W., & Chen, H. (2023). Lactate Medi-ates the Bone Anabolic Effect of High-Intensity Interval Training by Inducing Osteoblast Differ-entiation. The Journal of Bone and Joint Surgery. American Volume, 105(5), 369–379. https://doi.org/10.2106/JBJS.22.01028

Downloads

Published

2025-06-24

How to Cite

Wibowo, S., Wiriawan, O., Sholikhah, A. M., Syaifudin, A., Pamungkas, Y., Herawati, L., … Supriyadi, S. (2025). The effectiveness of speed, agility, quickness training vs high-intensity interval training in improving speed and agility on badminton players. Retos, 68, 1979–1988. https://doi.org/10.47197/retos.v68.113616

Issue

Section

Original Research Article