The impact of combined cerebellar transcranial alternating current stimulation and repetitive motor training on upper limb recovery in stroke patients
DOI:
https://doi.org/10.47197/retos.v72.117491Keywords:
Cerebellar stimulation, neurorehabilitation, plasticity, repetitive motor training, stroke, tACS, upper limbAbstract
Background: Upper limb motor impairment is a common and disabling consequence of stroke, often showing limited recovery with conventional rehabilitation. Non-invasive brain stimulation (NIBS), particularly transcranial alternating current stimulation (tACS), has emerged as a promising neuro-modulatory technique; however, the effects of cerebellar tACS remain underexplored.
Objective: To investigate the efficacy of cerebellar tACS combined with repetitive motor training (RMT) on upper limb motor recovery in patients with subacute ischemic stroke.
Methods: In this randomized, double-blind, sham-controlled trial, 52 patients with subacute ischemic stroke and unilateral upper limb hemiparesis were randomly assigned to receive either active cerebellar tACS or sham stimulation. Active tACS (70 Hz, 1 mA, 20 minutes) was delivered prior to daily RMT sessions (60 min/day, 5 days/week for 3 weeks). The primary outcome was upper limb motor function (Fugl-Meyer Assessment for Upper Extremity; FMA-UE). Secondary outcomes included manual dexterity (Box and Block Test; BBT), spasticity (Modified Ashworth Scale; MAS), and hand grip strength. Assessments were conducted at baseline, post-intervention, and 4-week follow-up by blinded evaluators.
Results: Participants receiving active tACS demonstrated significantly greater gains in FMA-UE (+11.2 vs. +3.8; p = 0.01), BBT (+7.1 vs. +1.8 blocks/min; p = 0.03), MAS (p = 0.04), and grip strength (+4.8 kg vs. +1.9 kg; p = 0.02) compared to the sham group. A large effect size was observed for FMA-UE (Cohen’s d > 0.8).
Conclusion: Cerebellar tACS combined with repetitive motor training significantly enhances upper limb motor recovery in subacute stroke. These findings support cerebellar neuromodulation as a promising adjunct in post-stroke rehabilitation.
References
Ambrus, G. G., Paulus, W., & Antal, A. (2012). Cutaneous perception thresholds of electrical stimulation methods: Comparison of tDCS and tRNS. Clinical Neurophysiology, 123(4), 829–835. https://doi.org/10.1016/j.clinph.2011.08.023
Antal, A., Alekseichuk, I., Bikson, M., Brockmöller, J., Brunoni, A. R., Chen, R., Cohen, L. G., Dowthwaite, G., Ellrich, J., Flöel, A., Fregni, F., George, M. S., Hamilton, R., Haueisen, J., Herrmann, C. S., Hummel, F. C., Lefaucheur, J. P., Liebetanz, D., Loo, C. K., … Paulus, W. (2017). Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology, 128(9), 1774–1809.
Bastian, A. J. (2006). Learning to predict the future: The cerebellum adapts feedforward movement control. Current Opinion in Neurobiology, 16(6), 645–649. https://doi.org/10.1016/j.conb.2006.08.016Bhanpuri NH, Okamura AM, Bastian AJ. Predictive modeling by the cerebellum improves proprioception. J Neurosci. 2013;33(1):143–153.
Bohannon, R. W. (2008). Grip strength: An indispensable biomarker for older adults. Clinical Interven-tions in Aging, 3(4), 419–425. https://doi.org/10.2147/CIA.S24617
Bostan, A. C., & Strick, P. L. (2010). The cerebellum and basal ganglia are interconnected. Neuropsy-chology Review, 20(3), 261–270. https://doi.org/10.1007/s11065-010-9143-9
Brittain, J. S., Probert-Smith, P., Aziz, T. Z., & Brown, P. (2013). Tremor suppression by rhythmic tran-scranial current stimulation. Current Biology, 23(5), 436–440. https://doi.org/10.1016/j.cub.2013.01.068
Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80(3), 807–815. https://doi.org/10.1016/j.neuron.2013.10.044
Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(5), 2322–2345. https://doi.org/10.1152/jn.00339.2011
Daskalakis, Z. J., Paradiso, G. O., Christensen, B. K., Fitzgerald, P. B., Gunraj, C., & Chen, R. (2004). Ex-ploring the connectivity between the cerebellum and motor cortex in humans. Journal of Phys-iology, 557(2), 689–700. https://doi.org/10.1113/jphysiol.2003.059808
Ferrucci, R., Cortese, F., & Priori, A. (2015). Cerebellar tDCS: How to do it. Cerebellum, 14(1), 27–30. https://doi.org/10.1007/s12311-014-0617-3
Fertonani, A., & Miniussi, C. (2017). Transcranial electrical stimulation: What we know and do not know about mechanisms. The Neuroscientist, 23(2), 109–123. https://doi.org/10.1177/1073858416631966
Galea, J. M., Jayaram, G., Ajagbe, L., & Celnik, P. (2009). Modulation of cerebellar excitability by polari-ty-specific noninvasive direct current stimulation. Journal of Neuroscience, 29(28), 9115–9122. https://doi.org/10.1523/JNEUROSCI.2184-09.2009
Galea, J. M., Vazquez, A., Pasricha, N., de Xivry, J. J., & Celnik, P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cer-ebellum learns. Cerebral Cortex, 21(8), 1761–1770. https://doi.org/10.1093/cercor/bhq246
Gong, Q., Yan, R., Chen, H., Li, L., Huang, X., & Zhou, Y. (2023). Effects of cerebellar transcranial direct current stimulation on rehabilitation of upper limb motor function after stroke. Frontiers in Neurology, 14, 1044333. https://doi.org/10.3389/fneur.2023.1044333
Grimaldi, G., Argyropoulos, G. P., Bastian, A., Cortes, M., Davis, N. J., Edwards, D. J., … Manto, M. (2016). Non-invasive cerebellar stimulation—A consensus paper. Cerebellum, 15(1), 95–110. https://doi.org/10.1007/s12311-015-0687-9
Hardwick, R. M., Forrence, A. D., Krakauer, J. W., Miall, R. C., & Celnik, P. A. (2019). Time-dependent competition between goal-directed and habitual response preparation in the human brain. Neuron, 103(3), 423–432.e5. https://doi.org/10.1016/j.neuron.2019.05.025
Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. Wiley.
Helfrich, R. F., Schneider, T. R., Rach, S., Trautmann-Lengsfeld, S. A., Engel, A. K., & Herrmann, C. S. (2014). Entrainment of brain oscillations by transcranial alternating current stimulation. Cur-rent Biology, 24(3), 333–339. https://doi.org/10.1016/j.cub.2013.12.041
Herrmann, C. S., Rach, S., Neuling, T., & Strüber, D. (2013). Transcranial alternating current stimula-tion: A review of the underlying mechanisms and modulation of cognitive processes. Frontiers in Human Neuroscience, 7, 279. https://doi.org/10.3389/fnhum.2013.00279
Iglesias, J. E., Insausti, R., Lerma-Usabiaga, G., Bocchetta, M., Van Leemput, K., Greve, D. N., … Caballe-ro-Gaudes, C. (2018). A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. NeuroImage, 183, 314–326. https://doi.org/10.1016/j.neuroimage.2018.08.012
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neu-roscience, 9(4), 304–313. https://doi.org/10.1038/nrn2332
Ito, M. (2006). Cerebellar circuitry as a neuronal machine. Progress in Neurobiology, 78(3–5), 272–303. https://doi.org/10.1016/j.pneurobio.2006.02.006
Jayaram, G., Tang, B., Pallegadda, R., Vasudevan, E. V., Celnik, P., & Bastian, A. (2012). Modulating lo-comotor adaptation with cerebellar stimulation. Journal of Neurophysiology, 107(11), 2950–2957. https://doi.org/10.1152/jn.00645.2011
Koch, G., Bonnì, S., Casula, E. P., Iosa, M., Paolucci, S., Pellicciari, M. C., … Caltagirone, C. (2018). Role of the cerebellum in reward-based learning. Frontiers in Systems Neuroscience, 12, 68. https://doi.org/10.3389/fnsys.2018.00068
Koch, G., Mori, F., Marconi, B., Codeca, C., Pecchioli, C., Salerno, S., … Caltagirone, C. (2008). Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clinical Neurophysiology, 119(11), 2559–2569. https://doi.org/10.1016/j.clinph.2008.08.008
Kwah, L. K., Herbert, R. D., Harvey, L. A., & Diong, J. H. (2013). Half of the adults who recover from stroke still have reduced upper limb strength. Stroke Research and Treatment, 2013, 1–5. https://doi.org/10.1155/2013/428356
Langhorne, P., Bernhardt, J., & Kwakkel, G. (2009). Stroke rehabilitation. The Lancet, 373(9678), 1693–1702. https://doi.org/10.1016/S0140-6736(09)60892-4
Lefaucheur, J. P., Aleman, A., Baeken, C., Benninger, D. H., Brunelin, J., Di Lazzaro, V., … Ziemann, U. (2020). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clinical Neurophysiology, 131(2), 474–528. https://doi.org/10.1016/j.clinph.2019.11.002
Lefebvre, S., & Liew, S. L. (2017). Anatomical parameters of tDCS to modulate the motor system after stroke: A review. Frontiers in Neurology, 8, 29. https://doi.org/10.3389/fneur.2017.00029
Mathiowetz, V., Volland, G., Kashman, N., & Weber, K. (1985). Adult norms for the Box and Block Test of manual dexterity. American Journal of Occupational Therapy, 39(6), 386–391. https://doi.org/10.5014/ajot.39.6.386
Miall, R. C., & Reckess, G. Z. (2002). The cerebellum and the timing of coordinated movement. Experi-mental Brain Research, 147(3), 300–306. https://doi.org/10.1007/s00221-002-1269-8
Miniussi, C., & Rossini, P. M. (2011). Transcranial brain stimulation: Past, present, and future. Brain Stimulation, 4(4), 193–195. https://doi.org/10.1016/j.brs.2011.07.001
Mori, S., & Matsuyama, K. (1991). Predominant activation of ipsilateral descending pathways from the cerebellar fastigial nucleus in the cat. Journal of Neurophysiology, 66(6), 1881–1896. https://doi.org/10.1152/jn.1991.66.6.1881
Murphy, T. H., & Corbett, D. (2009). Plasticity during stroke recovery: From synapse to behaviour. Na-ture Reviews Neuroscience, 10(12), 861–872. https://doi.org/10.1038/nrn2735
Nakayama, H., Jørgensen, H. S., Raaschou, H. O., & Olsen, T. S. (1994). Compensation in recovery of upper extremity function after stroke: The Copenhagen Stroke Study. Archives of Physical Medicine and Rehabilitation, 75(8), 852–857. https://doi.org/10.1016/0003-9993(94)90108-2
Page, S. J., Fulk, G. D., & Boyne, P. (2012). Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys-ical Therapy, 92(6), 791–798. https://doi.org/10.2522/ptj.20110009
Ptak, R., & Schnider, A. (2005). The dorsal attention network mediates orienting toward behaviorally relevant stimuli in spatial neglect. Journal of Cognitive Neuroscience, 17(4), 525–536. https://doi.org/10.1162/0898929053279520
Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experi-mental Brain Research, 185(3), 359–381. https://doi.org/10.1007/s00221-008-1280-5
Spencer, R. M., & Ivry, R. B. (2007). The temporal representation of in the cerebellum: Insights from motor timing. Cognitive Processing, 8(4), 219–225. https://doi.org/10.1007/s10339-007-0169-z
Takeuchi, N., & Izumi, S. (2013). Noninvasive brain stimulation for motor recovery after stroke: Mech-anisms and future views. Stroke Research and Treatment, 2013, 1–8. https://doi.org/10.1155/2013/923206
Veerbeek, J. M., van Wegen, E., van Peppen, R., van der Wees, P. J., Hendriks, E., Rietberg, M., & Kwakkel, G. (2014). What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One, 9(2), e87987. https://doi.org/10.1371/journal.pone.0087987
Vosskuhl, J., Strüber, D., & Herrmann, C. S. (2018). Non-invasive brain stimulation: A paradigm shift in understanding brain oscillations. Frontiers in Human Neuroscience, 12, 211. https://doi.org/10.3389/fnhum.2018.00211
Wischnewski, M., Schutter, D. J., & Nitsche, M. A. (2019). Effects of beta-tACS on corticospinal excitabil-ity: A meta-analysis. Brain Stimulation, 12(6), 1381–1389. https://doi.org/10.1016/j.brs.2019.07.023
Woytowicz, E. J., Rietschel, J. C., Goodman, R. N., Conroy, S. S., Sorkin, J. D., Whitall, J., & Wittenberg, G. F. (2017). Determining levels of upper extremity movement impairment by applying a cluster analysis to the Fugl-Meyer Assessment of the upper extremity. Archives of Physical Medicine and Rehabilitation, 98(3), 456–462. https://doi.org/10.1016/j.apmr.2016.06.023
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Basma Hussein Mohammed, Reham Ali Mohamed Ali Ahmed, Alyaa Abdallah Atallah Ahmed Zaid, Azza Mohamed Atya, Mostafa A. Abdelhameed

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.