Performance and segmental velocity in Olympic and Traditional Rowing: an analysis in female rowers at different intensities

Autores/as

  • Sergio Calavia Carbajal Department of General and Specific Didactics, Faculty of Education, University of Alicante, San Vicente del Raspeig, Spain
  • Alfonso Penichet Tomas Department of General and Specific Didactics, Faculty of Education, University of Alicante, San Vicente del Raspeig, Spain https://orcid.org/0000-0003-0018-5589
  • Jose M. Jimenez Olmedo Department of General and Specific Didactics, Faculty of Education, University of Alicante, San Vicente del Raspeig, Spain https://orcid.org/0000-0003-3444-979X
  • Javier Olaya Cuartero Department of General and Specific Didactics, Faculty of Education, University of Alicante, San Vicente del Raspeig, Spain https://orcid.org/0000-0003-1807-7914

DOI:

https://doi.org/10.47197/retos.v67.113177

Palabras clave:

fixed seat rowing, rowing biomechanics, kinetic, kinematic, power

Resumen

Introducción: la potencia en el remo es uno de los principales factores que influye en el aumento de la velocidad de la embarcación, y el incremento en la velocidad de los segmentos corporales mejora la velocidad de la remada en el Remo Olímpico.

Objetivo: el objetivo de este estudio es analizar la relación entre la velocidad de cada segmento corporal y el rendimiento a diferentes frecuencias de remada, así como examinar las diferencias entre el Remo Tradicional y el Remo Olímpico.

Metodología: trece remeras altamente entrenadas a nivel nacional realizaron series a 18, 24 y 30 paladas por minuto (ppm) en remoergóemtros para ambas modalidades. Se llevó a cabo un análisis de video utilizando el sistema de análisis Rower Up. Se utilizó el coeficiente de correlación de Pearson para establecer relaciones entre la velocidad segmentaria y el rendimiento en el remo. La magnitud del coeficiente de correlación se interpretó como trivial (<0.1), pequeña (0.1–0.3), moderada (0.3–0.5), fuerte (0.5–0.7), muy fuerte (0.7–0.9) y casi perfecta/perfecta (0.9–1).

Resultados: el Remo Tradicional mostró correlaciones significativas en el tronco a 18 ppm (r=0.375; p<0.001), 24 ppm (r=0.560; p<0.001) y 30 ppm (r=0.243; p=0.099). Los brazos mostraron correlación significativa a 18 ppm (r=0.476; p<0.001) y a 24 ppm (r=0.257; p=0.005). El Remo Olímpico presentó correlaciones significativas en las piernas a 18 ppm (r=0.448; p<0.001), 24 ppm (r=0.584; p<0.001) y 30 ppm (r=0.531; p<0.001). Los brazos mostraron correlación significativa a 30 ppm (r=0.433; p<0.001).

Conclusiones: la velocidad de las piernas en el Remo Olímpico mostró una correlación más alta que en el Remo Tradicional en todas las intensidades, mientras que la velocidad del tronco presentó el comportamiento opuesto, ya que nunca se correlacionó con el rendimiento.

Citas

Baudouin, A., & Hawkins, D. (2002). A biomechanical review of factors affecting rowing performance. British Journal of Sports Medicine, 36(6), 396–402. https://doi.org/10.1136/bjsm.36.6.396

Blazevich, A. J. (2013). Biomecánica deportiva: manual para la mejora del rendimiento humano. Paidotribo.

Buckeridge, E. M., Bull, A. M. J., & McGregor, A. H. (2015). Biomechanical determinants of elite rowing technique and performance. Scandinavian Journal of Medicine & Science in Sports, 25(2), 176–183. https://doi.org/10.1111/sms.12264

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. In Statistical Power Analysis for the Behavioral Sciences (Lawrence E).

Duchene, Y., Simon, F. R., Ertel, G. N., Maciejewski, H., Gauchard, G. C., & Mornieux, G. (2024). The stroke rate influences performance, technique and core stability during rowing ergometer. Sports Biomechanics, In press. https://doi.org/10.1080/14763141.2024.2301992

Elliott, B., Birkett, O., & Lyttle, A. (2002). Rowing: The RowPerfect Ergometer: A training aid for on‐water single scull rowing. Sports Biomechanics, 1(2), 123–134. https://doi.org/10.1080/14763140208522791

Ertel, G. (2018). Influence of trunk extension technique on performance and core stability during ergometer rowing. July, 1–4.

Gee, T., Olsen, P., Fritzdorf, S., White, D., Golby, J., & Thompson, K. (2012). Recovery of rowing sprint performance after high intensity strength training. International Journal of Sports Science and Coaching, 7(1), 109–120. https://doi.org/10.1260/1747-9541.7.1.109

González Aramendi, J. M. (2014). Remo olímpico y remo tradicional: aspectos biomecánicos, fisiológicos y nutricionales. Archivos de Medicina Del Deporte, 31(159), 51–59.

Harat, I., Clark, N. W., Boffey, D., Herring, C. H., Goldstein, E. R., Redd, M. J., Wells, A. J., Stout, J. R., & Fukuda, D. H. (2020). Dynamic post-activation potentiation protocol improves rowing performance in experienced female rowers. Journal of Sports Sciences, 38(14), 1615–1623. https://doi.org/10.1080/02640414.2020.1754110

Hartmann, U., Mader, A., Wasser, K., & Klauer, I. (1993). Peak force, velocity, and power during five and ten maximal rowing ergometer strokes by world class female and male rowers. International Journal of Sports Medicine, 14(SUPPL. 1), 42–45. https://doi.org/10.1055/s-2007-1021224

Hofmijster, M. J., Landman, E. H., Smith, R. M., & Van Soest, A. J. K. (2007). Effect of stroke rate on the distribution of net mechanical power in rowing. Journal of Sports Sciences, 25(4), 403–411. https://doi.org/10.1080/02640410600718046

Holt, A. C., Aughey, R. J., Ball, K., Hopkins, W. G., & Siegel, R. (2020). Technical determinants of on-water rowing performance. Frontiers in Sports and Active Living, 2, 589013. https://doi.org/10.3389/fspor.2020.589013

Kleshnev, V. (1998). Estimation of biomechanical parameters and propulsive efficiency of rowing. Australian Institute of Sport, 1–17.

Kleshnev, V. (2000). Power in Rowing. 18 International Symposium on Biomechanics in Sports, 2–5.

L Pollock, C., Jenkyn, T., Jones, I., D Ivanova, T., & Garland, S. J. (2009). Electromyography and Kinematics of the Trunk during Rowing in Elite Female Rowers. Medicine and Science in Sports and Exercise, 41(3), 628–636.

Lamb, D. H. (1989). A kinematic comparison of ergometer and on-water rowing. American Journal of Sports Medicine, 17(3), 367–373. https://doi.org/10.1177/036354658901700310

Larrinaga Garcia, B., León Guereño, P., Coca Nuñez, A., & Arbillaga Etxarri, A. (2023). Análisis de los parámetros de rendimiento del remo de Traineras: una revisión sistemática (Analysis of performance parameters of Traineras: a systematic review). Retos, 49, 322–332. https://doi.org/10.47197/retos.v49.97626

Li, Y., Koldenhoven, R. M., Jiwan, N. C., Zhan, J., & Liu, T. (2020). Trunk and shoulder kinematics of rowing displayed by Olympic athletes. Sports Biomechanics, 22(9), 1095–1107. https://doi.org/10.1080/14763141.2020.1781238

Li, Y., Koldenhoven, R. M., Jiwan, N. C., Zhan, J., & Liu, T. (2021). Intra-trunk and arm coordination displayed by Olympic rowing athletes. Sports Biomechanics, 00(00), 1–15. https://doi.org/10.1080/14763141.2021.1883728

Lorenzo Buceta, H., Pérez Treus, S., García Soidán, J. L., Arufe Giraldez, V., Alfonso Cornes, X., & Alfonso Cornes, A. (2015). Análisis dinámico en el remo de banco fijo: la trainera (Dynamic analysis on the fixed seat rowing: trainera). Retos, 25, 120–123. https://doi.org/10.47197/retos.v0i25.34495

Lu, T., Jones, M. T., Yom, J., Ishida, A., & White, J. B. (2023). Physiological and biomechanical responses to exercise on two different types of rowing ergometers in NCAA Division I oarswomen. European Journal of Applied Physiology, 123(7), 1529–1541. https://doi.org/10.1007/s00421-023-05172-w

McGregor, A. H., Patankar, Z. S., & Bull, A. M. J. (2008). Do men and women row differently? a spinal kinematic and force perspective. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 222(2), 77–83. https://doi.org/10.1243/17543371JSET22

McKay, A. K. A., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey-Tolfrey, V. L., Sheppard, J., & Burke, L. M. (2022). Defining Training and Performance Caliber: A Participant Classification Framework. International Journal of Sports Physiology and Performance, 17(2), 317–331. https://doi.org/10.1123/ijspp.2021-0451

Miras-Moreno, S., Pérez-Castilla, A., Rojas-Ruiz, F. J., & García-Ramos, A. (2023). Lifting velocity predicts the maximum number of repetitions to failure with comparable accuracy during the Smith machine and free-weight prone bench pull exercises. Heliyon, 9(9), e19628. https://doi.org/10.1016/j.heliyon.2023.e19628

Mujika, I., Bourdillon, N., De Txabarri, R. G., & Millet, G. P. (2023). High-Intensity Interval Training, performance, and oxygen uptake kinetics in highly trained traditional rowers. International Journal of Sports Physiology and Performance, 18(3), 326–330. https://doi.org/10.1123/ijspp.2022-0323

Özkaya, N., Leger, D., Goldsheyder, D., & Nordin, M. (1999). Fundamentals of Biomechanics (third edit). Springer International Publishing.

Penichet-Tomas, A., Jimenez-Olmedo, J. M., Pueo, B., & Olaya-Cuartero, J. (2023). Physiological and mechanical responses to a graded exercise test in traditional rowing. International Journal of Environmental Research and Public Health, 20, 3664. https://doi.org/10.3390/ijerph20043664

Penichet-Tomás, A., & Pueo, B. (2017). Performance conditional factors in rowing (Factores condicionales de rendimiento en remo). Retos, 2041(32), 238–240. https://doi.org/10.47197/retos.v0i32.56067

Penichet-Tomás, A., Pueo, B., & Jiménez-Olmedo, J. M. (2019). Physical performance indicators in traditional rowing championships. The Journal of Sports Medicine and Physical Fitness, 59(5), 3664. https://doi.org/10.23736/S0022-4707.18.08524-9

Penichet-Tomas, A., Pueo, B., Selles-Perez, S., & Jimenez-Olmedo, J. M. (2021). Analysis of anthropometric and body composition profile in male and female traditional rowers. International Journal of Environmental Research and Public Health, 18(15), 7826. https://doi.org/10.3390/ijerph18157826

Pueo, B., Hopkins, W. G., Penichet-Tomas, A., & Jimenez-Olmedo, J. M. (2023). Accuracy of flight time and countermovement-jump height estimated from videos at different frame rates with MyJump. Biology of Sport, 40(2), 595–601. https://doi.org/10.5114/BIOLSPORT.2023.118023

Rodriguez-Marroyo, J. A., & Garcia-Lopez, J. (2015). Trabajo, Potencia Y Energía. In Biomecánica Básica aplicada a la Actividad Fisica y al Deporte (pp. 149–171). Paidotribo.

Steer, R. R., McGregor, A. H., & Bull, A. M. J. (2006). A comparison of kinematics and performance measures of two rowing ergometers. Journal of Sports Science and Medicine, 5, 52–59.

Descargas

Publicado

2025-04-17

Cómo citar

Calavia Carbajal, S., Penichet Tomas, A., Jimenez Olmedo, J. M., & Olaya Cuartero, J. (2025). Performance and segmental velocity in Olympic and Traditional Rowing: an analysis in female rowers at different intensities. Retos, 67, 962–969. https://doi.org/10.47197/retos.v67.113177

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a