Performance and segmental velocity in Olympic and Traditional Rowing: an analysis in female rowers at different intensities

Autores

  • Sergio Calavia Carbajal Department of General and Specific Didactics, Faculty of Education, University of Alicante, San Vicente del Raspeig, Spain
  • Alfonso Penichet Tomas Department of General and Specific Didactics, Faculty of Education, University of Alicante, San Vicente del Raspeig, Spain https://orcid.org/0000-0003-0018-5589
  • Jose M. Jimenez Olmedo Department of General and Specific Didactics, Faculty of Education, University of Alicante, San Vicente del Raspeig, Spain https://orcid.org/0000-0003-3444-979X
  • Javier Olaya Cuartero Department of General and Specific Didactics, Faculty of Education, University of Alicante, San Vicente del Raspeig, Spain https://orcid.org/0000-0003-1807-7914

DOI:

https://doi.org/10.47197/retos.v67.113177

Palavras-chave:

fixed seat rowing, rowing biomechanics, kinetic, kinematic, power

Resumo

Introduction: rowing power is one of the main factors that influences the increase in boat speed, and the increase in the speed of body segments enhances stroke velocity in Olympic Rowing.

Objective: the objective of this study is to analyze the relationship between the velocity of each segment and performance at different stroke rates, and to examine the differences between Traditional Rowing and Olympic Rowing.

Methodology: thirteen highly trained national-level female rowers performed sets at 18, 24, and 30 strokes per minute (spm) on rowing ergometers for both modalities. Video analysis was carried out using the Rower Up analysis system. Pearson's correlation coefficient was used to establish relationships between segment velocity and rowing performance. The magnitude of the correlation coefficient was interpreted as trivial (<0.1), small (0.1–0.3), moderate (0.3–0.5), strong (0.5–0.7), very strong (0.7–0.9), and almost perfect/perfect (0.9–1).

Results: Traditional Rowing shows significant correlations in the trunk at 18 spm (r=0.375; p<0.001), 24 spm (r=0.560; p<0.001) and at 30 spm (r=0.243; p=0.099). Arms shows significant correlation at 18 spm (r=0.476; p<0.001) and at 24 spm (r=0.257; p=0.005). Olympic Rowing shows significant correlations in the legs at 18 spm (r=0.448; p<0.001), 24 spm (r=0.584; p<0.001) and at 30 spm (r=0.531; p<0.001). Arms shows significant correlation at 30 spm (r=0.433; p<0.001).

Conclusions: the velocity of the legs in Olympic Rowing showed higher correlation than in Traditional Rowing at all intensities, whereas the velocity of the trunk showed the opposite, where the trunk never correlated with performance.

Referências

Baudouin, A., & Hawkins, D. (2002). A biomechanical review of factors affecting rowing performance. British Journal of Sports Medicine, 36(6), 396–402. https://doi.org/10.1136/bjsm.36.6.396

Blazevich, A. J. (2013). Biomecánica deportiva: manual para la mejora del rendimiento humano. Paidotribo.

Buckeridge, E. M., Bull, A. M. J., & McGregor, A. H. (2015). Biomechanical determinants of elite rowing technique and performance. Scandinavian Journal of Medicine & Science in Sports, 25(2), 176–183. https://doi.org/10.1111/sms.12264

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. In Statistical Power Analysis for the Behavioral Sciences (Lawrence E).

Duchene, Y., Simon, F. R., Ertel, G. N., Maciejewski, H., Gauchard, G. C., & Mornieux, G. (2024). The stroke rate influences performance, technique and core stability during rowing ergometer. Sports Biomechanics, In press. https://doi.org/10.1080/14763141.2024.2301992

Elliott, B., Birkett, O., & Lyttle, A. (2002). Rowing: The RowPerfect Ergometer: A training aid for on‐water single scull rowing. Sports Biomechanics, 1(2), 123–134. https://doi.org/10.1080/14763140208522791

Ertel, G. (2018). Influence of trunk extension technique on performance and core stability during ergometer rowing. July, 1–4.

Gee, T., Olsen, P., Fritzdorf, S., White, D., Golby, J., & Thompson, K. (2012). Recovery of rowing sprint performance after high intensity strength training. International Journal of Sports Science and Coaching, 7(1), 109–120. https://doi.org/10.1260/1747-9541.7.1.109

González Aramendi, J. M. (2014). Remo olímpico y remo tradicional: aspectos biomecánicos, fisiológicos y nutricionales. Archivos de Medicina Del Deporte, 31(159), 51–59.

Harat, I., Clark, N. W., Boffey, D., Herring, C. H., Goldstein, E. R., Redd, M. J., Wells, A. J., Stout, J. R., & Fukuda, D. H. (2020). Dynamic post-activation potentiation protocol improves rowing performance in experienced female rowers. Journal of Sports Sciences, 38(14), 1615–1623. https://doi.org/10.1080/02640414.2020.1754110

Hartmann, U., Mader, A., Wasser, K., & Klauer, I. (1993). Peak force, velocity, and power during five and ten maximal rowing ergometer strokes by world class female and male rowers. International Journal of Sports Medicine, 14(SUPPL. 1), 42–45. https://doi.org/10.1055/s-2007-1021224

Hofmijster, M. J., Landman, E. H., Smith, R. M., & Van Soest, A. J. K. (2007). Effect of stroke rate on the distribution of net mechanical power in rowing. Journal of Sports Sciences, 25(4), 403–411. https://doi.org/10.1080/02640410600718046

Holt, A. C., Aughey, R. J., Ball, K., Hopkins, W. G., & Siegel, R. (2020). Technical determinants of on-water rowing performance. Frontiers in Sports and Active Living, 2, 589013. https://doi.org/10.3389/fspor.2020.589013

Kleshnev, V. (1998). Estimation of biomechanical parameters and propulsive efficiency of rowing. Australian Institute of Sport, 1–17.

Kleshnev, V. (2000). Power in Rowing. 18 International Symposium on Biomechanics in Sports, 2–5.

L Pollock, C., Jenkyn, T., Jones, I., D Ivanova, T., & Garland, S. J. (2009). Electromyography and Kinematics of the Trunk during Rowing in Elite Female Rowers. Medicine and Science in Sports and Exercise, 41(3), 628–636.

Lamb, D. H. (1989). A kinematic comparison of ergometer and on-water rowing. American Journal of Sports Medicine, 17(3), 367–373. https://doi.org/10.1177/036354658901700310

Larrinaga Garcia, B., León Guereño, P., Coca Nuñez, A., & Arbillaga Etxarri, A. (2023). Análisis de los parámetros de rendimiento del remo de Traineras: una revisión sistemática (Analysis of performance parameters of Traineras: a systematic review). Retos, 49, 322–332. https://doi.org/10.47197/retos.v49.97626

Li, Y., Koldenhoven, R. M., Jiwan, N. C., Zhan, J., & Liu, T. (2020). Trunk and shoulder kinematics of rowing displayed by Olympic athletes. Sports Biomechanics, 22(9), 1095–1107. https://doi.org/10.1080/14763141.2020.1781238

Li, Y., Koldenhoven, R. M., Jiwan, N. C., Zhan, J., & Liu, T. (2021). Intra-trunk and arm coordination displayed by Olympic rowing athletes. Sports Biomechanics, 00(00), 1–15. https://doi.org/10.1080/14763141.2021.1883728

Lorenzo Buceta, H., Pérez Treus, S., García Soidán, J. L., Arufe Giraldez, V., Alfonso Cornes, X., & Alfonso Cornes, A. (2015). Análisis dinámico en el remo de banco fijo: la trainera (Dynamic analysis on the fixed seat rowing: trainera). Retos, 25, 120–123. https://doi.org/10.47197/retos.v0i25.34495

Lu, T., Jones, M. T., Yom, J., Ishida, A., & White, J. B. (2023). Physiological and biomechanical responses to exercise on two different types of rowing ergometers in NCAA Division I oarswomen. European Journal of Applied Physiology, 123(7), 1529–1541. https://doi.org/10.1007/s00421-023-05172-w

McGregor, A. H., Patankar, Z. S., & Bull, A. M. J. (2008). Do men and women row differently? a spinal kinematic and force perspective. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 222(2), 77–83. https://doi.org/10.1243/17543371JSET22

McKay, A. K. A., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey-Tolfrey, V. L., Sheppard, J., & Burke, L. M. (2022). Defining Training and Performance Caliber: A Participant Classification Framework. International Journal of Sports Physiology and Performance, 17(2), 317–331. https://doi.org/10.1123/ijspp.2021-0451

Miras-Moreno, S., Pérez-Castilla, A., Rojas-Ruiz, F. J., & García-Ramos, A. (2023). Lifting velocity predicts the maximum number of repetitions to failure with comparable accuracy during the Smith machine and free-weight prone bench pull exercises. Heliyon, 9(9), e19628. https://doi.org/10.1016/j.heliyon.2023.e19628

Mujika, I., Bourdillon, N., De Txabarri, R. G., & Millet, G. P. (2023). High-Intensity Interval Training, performance, and oxygen uptake kinetics in highly trained traditional rowers. International Journal of Sports Physiology and Performance, 18(3), 326–330. https://doi.org/10.1123/ijspp.2022-0323

Özkaya, N., Leger, D., Goldsheyder, D., & Nordin, M. (1999). Fundamentals of Biomechanics (third edit). Springer International Publishing.

Penichet-Tomas, A., Jimenez-Olmedo, J. M., Pueo, B., & Olaya-Cuartero, J. (2023). Physiological and mechanical responses to a graded exercise test in traditional rowing. International Journal of Environmental Research and Public Health, 20, 3664. https://doi.org/10.3390/ijerph20043664

Penichet-Tomás, A., & Pueo, B. (2017). Performance conditional factors in rowing (Factores condicionales de rendimiento en remo). Retos, 2041(32), 238–240. https://doi.org/10.47197/retos.v0i32.56067

Penichet-Tomás, A., Pueo, B., & Jiménez-Olmedo, J. M. (2019). Physical performance indicators in traditional rowing championships. The Journal of Sports Medicine and Physical Fitness, 59(5), 3664. https://doi.org/10.23736/S0022-4707.18.08524-9

Penichet-Tomas, A., Pueo, B., Selles-Perez, S., & Jimenez-Olmedo, J. M. (2021). Analysis of anthropometric and body composition profile in male and female traditional rowers. International Journal of Environmental Research and Public Health, 18(15), 7826. https://doi.org/10.3390/ijerph18157826

Pueo, B., Hopkins, W. G., Penichet-Tomas, A., & Jimenez-Olmedo, J. M. (2023). Accuracy of flight time and countermovement-jump height estimated from videos at different frame rates with MyJump. Biology of Sport, 40(2), 595–601. https://doi.org/10.5114/BIOLSPORT.2023.118023

Rodriguez-Marroyo, J. A., & Garcia-Lopez, J. (2015). Trabajo, Potencia Y Energía. In Biomecánica Básica aplicada a la Actividad Fisica y al Deporte (pp. 149–171). Paidotribo.

Steer, R. R., McGregor, A. H., & Bull, A. M. J. (2006). A comparison of kinematics and performance measures of two rowing ergometers. Journal of Sports Science and Medicine, 5, 52–59.

Downloads

Publicado

2025-04-17

Como Citar

Calavia Carbajal, S., Penichet Tomas, A., Jimenez Olmedo, J. M., & Olaya Cuartero, J. (2025). Performance and segmental velocity in Olympic and Traditional Rowing: an analysis in female rowers at different intensities. Retos, 67, 962–969. https://doi.org/10.47197/retos.v67.113177

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Artigos mais lidos do(s) mesmo(s) autor(es)